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ABSTRACT

This study examines the techno-economic feasibility of hybrid energy systems that utilize renewable
sources to meet the electrical demands of a livestock and poultry farm in the New Valley Governorate of Egypt. In
this study, HOMER Pro was used to explore different hybrid energy system setups that include solar panels, wind
turbines, biomass generators, and battery storage. The simulations were based on accurate local weather data and
real hourly electricity demand at the site. The photovoltaic/wind/biomass/battery system was the greatest
economical option, with a net present cost (NPC) of 9.62 million USD and a levelized cost of energy (LCOE) of
0.716 USD/kWh. Solar energy provided the majority of the farm’s electricity (82%), while wind and biomass made
smaller but important contributions. Sensitivity analyses showed that even modest improvements, like reducing
capital costs or slightly increasing renewable resource availability, could make these systems even more affordable.
The findings highlight how thoughtful combinations of renewable sources can offer reliable, sustainable, and
practical energy solutions for agriculture in remote areas.

Keywords: Renewable Power System, HOMER Pro Simulation, Microgrid Design, Rural Electrification,

Economic Optimization

INTRODUCTION

The increasing demand for clean, reliable, and
decentralized energy solutions has accelerated interest in
isolated microgrids, particularly for rural and remote
communities. Isolated microgrids have become a key
solution for delivering sustainable and reliable energy,
especially in areas lacking access to centralized grids
(Yadav et al., 2024).

The incorporation of energy from renewable sources
such as solar photovoltaic, wind turbines, hydroelectric
generators, and energy storage systems into microgrids
allows enhanced efficiency and less dependence on fossil
fuels (Belrzaeg et al., 2023). This setup enables the
utilization of local resources, balancing energy supply and
demand effectively (Alzahrani et al., 2023). Microgrids
enhance system reliability by operating independently
during main grid outages, providing uninterrupted
electricity to connected consumers (Quizhpe et al., 2024).
This capability is very beneficial in remote locations and
essential facilities. (Saxena et al., 2024). The strategic
coordination and management of these diverse energy
resources are crucial for achieving operational efficiency,
sustainability, and resilience. This integration is supported
by advanced optimization techniques and energy
management systems that dynamically adjust energy
generation and distribution in response to real-time
conditions (Dixit, 2024).

Many hybrid renewable energy systems have been
explored in recent research, bringing together different
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renewable sources to improve energy reliability and lessen
the reliance on traditional fossil fuels. Different hybrid
renewable energy configurations have been widely explored
for their ability to optimize energy production in off-grid
and rural areas. These include systems that combine
photovoltaic panels with wind turbines (Won et al., 2017;
Zhang et al., 2019), wind turbines with biomass (Osmani &
Zhang, 2014), photovoltaic panels with biomass (EI-Sattar
et al., 2022; Tiam Kapen et al., 2022), and more integrated
setups that bring together photovoltaic panels, wind
turbines, and biomass sources (Mahdavi et al., 2023).
Alongside these generation sources, various energy storage
technologies, particularly battery energy storage systems,
have been explored to improve system stability and ensure
continuous power supply. Other storage methods, such as
Supercapacitor-Battery combinations (Kotb et al., 2022; Lin
& Lei, 2017), Flywheel-Battery systems (Barelli et al.,
2019; Ngila & Farzaneh, 2023), and Pumped-Hydro
Storage (PHS) with batteries (Das et al., 2019; Guezgouz et
al., 2019), have also been investigated for their role in
enhancing microgrid performance.

Jahangir et al. (2024) utilized HOMER software to
model and optimize a hybrid renewable energy system.
Their work involved simulating different configurations that
combined wave energy converters, wind turbines,
photovoltaic panels, biogas generators, and lithium-ion
batteries, ultimately achieving a cost-effective and reliable
power supply for remote villages. HOMER proved to be a
valuable tool for assessing both the economic and technical
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feasibility of such complex systems. El-Sattar et al. (2021)
proposed an optimal hybrid renewable energy system
combining photovoltaic panels, wind turbines, biomass, and
battery storage to enhance rural electrification in Abu-
Mongar, Egypt. Among the three configurations evaluated,
the system integrating biomass with wind turbines and
batteries, optimized using the Slime Mould Algorithm
(SMA), achieved the best performance, with NPC of
approximately 3.48 x 10° USD, an energy cost (EC) of
0.119 USD/kWh, and a loss of power supply probability
(LPSP) of 3.25%. The use of HOMER software allows for
the optimization of hybrid systems by evaluating different
configurations to minimize the NPC and COE (EI-Maaroufi
etal., 2024).

The existing literature on hybrid renewable energy
systems has mainly concentrated on optimizing system
design by minimizing either the levelized cost of energy or
the net present cost. However, most sensitivity analyses
have been limited to a narrow set of parameters, often
overlooking critical factors such as project lifetime, seasonal
load variations, and the dynamic behavior of storage
systems. Furthermore, while several studies have addressed
the integration of energy storage systems into hybrid
configurations, the impact of storage performance on overall
system cost and reliability remains insufficiently explored.
One of the key challenges facing isolated microgrids with a
high penetration of renewable energy sources is the
management of excess energy generation and unmet load,
which can significantly affect both system economics and
operational stability (Emrani & Berrada, 2024).

This study aims to conduct a techno-economic
feasibility analysis and optimal design of a hybrid renewable
energy system combining photovoltaic panels, wind turbines,
a biomass generator, and battery energy storage for rural
electrification. The proposed system is designed to meet the
energy demands of a poultry and livestock farm located in the
New Valley Governorate of Egypt. Through detailed
simulation, optimization, and sensitivity analysis using
HOMER software, the study seeks to minimize the net present
cost and the cost of energy while ensuring reliable and
sustainable energy supply under varying operating conditions.

MATERIALS AND METHODS

In this paper, simulations, optimizations, and
sensitivity analyses for an integrated renewable energy
system using meteorological data along with the load
demand particular to the case study area from the New
Valley Governorate of Egypt are accomplished by means of
HOMER software. The study area is a 2000-feddan
agricultural zone situated in the New Valley Governorate,
Egypt. The site comprises an integrated farming system that
includes a livestock farm, a poultry farm, and cultivated
areas with date palms, wheat, and corn (maize). These
agricultural activities generate a significant volume of
organic residues, which are considered the primary source
of biomass used in the proposed hybrid energy system.
Simulation and optimization using HOMER software

HOMER software enables the simulation and
configuration of energy sources, energy storage systems
(ESS), electrical loads, converters, and optimization tools
tailored to the characteristics of the site and user preferences.

The microgrid design optimization process aims to
minimize the objective function while ensuring compliance
with reliability requirements (Siddaraju et al., 2022). It
evaluates and ranks possible system configurations
Depending on the lowest net NPC and COE. Figure 1
illustrates the structure for the development and
performance evaluation of standalone microgrids. Wind and
solar energy resources are available in the New Valley
Governorate, Egypt, which was selected as the research site.
Site is geographically located at 24°32.7'N latitude and
27°10.4'E longitude. Site-specific meteorological data,
including the speed of the wind, ambient temperature, and
sun irradiance, were obtained from the HOMER software
database. Figure 2 illustrates the monthly average values of
speed of the wind, temperature, radiation from the sun, and
clearness index.

The chosen site benefits from consistent access to
wind, biomass, and solar energy resources throughout the
year. The proposed renewable energy system primarily
consists of a biomass generator, a turbine for wind power, a
battery bank, a converter, and a source of electricity with an
average consumption of 2846.3 kwWh/day. This study aims to
design a cost-effective and sustainable power system able to
fulfill the energy demands of a poultry farm as well as
livestock production. To identify the most economically
viable renewable energy source, this paper evaluates four
different renewable energy configurations, which include
Photovoltaic-biomass-wind-batteries, photovoltaic-batteries-
wind, photovoltaic-biomass-batteries, and photovoltaic-
batteries, as illustrated in Fig. 3.

[ Component selection, Site selection ]

!

Input data: Resource, load, component cost, systems
constraints, Battery SOC

HOMER run

No
[ Configuration change ]

|

Estimate technical, economic performance parameters,
Net present Cost, Cost of Energy

Select the feasible
system sizing

Fig. 1. HOMER software optimization flow for hybrid
systems (Das et al., 2024) .
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Fig. 3. Schematic representation of different hybrid renewable energy system

The region under examination has a mean load of
roughly 2846.3 kWh per day, a peak load of 485.37 kW, and
a load factor of 0.24. As shown in Figure 4, the load demand
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Fig. 4. Load demand, a) daily, b) monthly, and c) load profile for the year
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The load demand analysis highlights significant
seasonal and daily variations in electricity consumption at
the farm. The highest energy demand occurs in winter
(January, February, and December) due to increased
heating requirements, whereas lower consumption is
observed in warmer months when heating is unnecessary.
There are two peaks in the hourly load profile, one between
5:00 and 10:00 AM and another between 6:00 and 10:00
PM. These peaks correspond to critical farm operations
including feeding, lighting, and ventilation. In contrast,
late-night hours (0:00 — 4:00 AM) exhibit minimal energy
usage, reflecting reduced farm activity. The winter months
show higher and sustained peak loads, while in summer,
the demand is lower and more stable. Understanding these
patterns is crucial for optimizing energy efficiency and
integrating renewable energy sources to ensure a reliable
and cost-effective power supply throughout the year.
Analytical modeling of hybrid microgrid components
Solar PV generation

The quantity of electrical energy generated by solar
photovoltaic panels is primarily influenced by solar
irradiance, as estimated by the HOMER software. The
electricity generated from the photovoltaic panels, denoted as
Psp(t), is calculated using the following expression (Kumar
etal., 2022):

Ip(6)

Pspu(8) = Pregy X igsspn X (152) X [1+ @1 (Te = Ts70)] Q)

Here, diosspv iS the derating factor for the photovoltaic
system, In (t) is the sun irradiance every hour, lstc is the
irradiance under conventional testing conditions, arpy is the
temperature coefficient, T. is the Photovoltaic cell
temperature, Tsrc is the cell temperature under conventional
testing conditions, and Prepy is the nominal power output of
the photovoltaic panel.

During night ime, the PV cell temperature T is
approximately equal to the ambient temperature T, but
during the daytime, T. can exceed Ta by around 30 °C or
more. The temperature of the PV cell is determined by the
equation (Kumar et al., 2022):

Tc(t) = Ta(t) + Tc.Noct - Ta.Noct X (Ilhi) X ( 1- uﬂ) (2)
T.Noct (€4

In this formula, Tanoet IS the ambient temperature
(NOCT), Tenoctis the NOCT of the Photovoltaic cell, Itnoc iS
the solar irradiance at NOCT conditions, ump is the efficiency
of the PV panel at the maximum power point, ' is the solar
transmittance, and ¢ is the PV array’s solar absorptance. The
technical as well as economical specifications of the solar
photovoltaic model utilized in the analysis are derived from
Yadav et al. (2024).
Wind power system

HOMER software estimates wind turbine power
output using a three-step process at each simulation time step.
First, it extrapolates the wind speed to the turbine's hub height
based on site-specific conditions. Then, it determines the
theoretical power output using the turbine's power curve in
relation to the calculated wind speed and standard air density.
Finally, the output is corrected to account for the actual air
density at the given location, ensuring a more accurate
representation of real-world performance.

The wind speed at the turbine hub height is
determined using input parameters specified in the Wind
Resource and Wind Shear sections. When a logarithmic wind

profile is applied, the hub-height wind velocity Vi s

calculated using the following equation (Youssef etal., 2023):
Zp

In(z2)

1n(§—‘s‘) ®)

th Vax

Where:

Vh Hub-height wind speed (m/s)

Zs Roughness length of the surface (m)
Va Anemometer-height wind speed (m/s)
Za Anemometer installation height (m)
Zn Height of turbine hub (m)

If the power law is employed, wind speed is calculated
using (Youssef et al., 2023):

Vi = Vo x [In(Zy/Z,)]" (4)
Where Y is the power law exponent.

Once the wind speed at the rotor hub level is
established, HOMER utilizes the turbine’s power curve to
estimate its output. Since power curves assume STP
conditions, the actual power output is corrected by the air
density ratio, as shown below (Youssef et al., 2023):

PW = Pn X (Pa/Pn)(5)
Where:
Pw Actual power output, KW
P Power at standard conditions, KW
pa Turbine hub height, kg m?®
pn Standard air density

In this study, the wind turbine is modeled with a hub
height of 31.8 meters, a rated capacity of 100 kW, and a rotor
radius of 10.5 meters. Monthly average wind speed data for the
selected site were sourced from the NASA meteorological
database, indicating an annual mean wind speed of 6.03 m/s. As
shown in Figure 5, the highest wind speeds occur in June, while
the lowest values are observed in December. The technical and
economic specifications of the wind turbine used in this analysis
are based on data provided by Yadav et al. (2024).
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Fig. 5. Average monthly wind speed profile for the
study area

Biomass power generation systems

Electricity generation from biomass can occur
through biochemical pathways, such as anaerobic digestion
and fermentation, or through thermochemical processes,
including gasification, pyrolysis, and direct combustion.
These methods convert biomass into gaseous or liquid fuels
suitable for energy production (Youssef et al., 2023).This
study focuses on utilizing agricultural crop residues available
in Egypt as a biomass source. The average monthly
availability of biomass at the selected site is illustrated in Fig.
6, with an average of approximately 2.43 tons per day. Peak
biomass availability occurs during the months of January and
February. The required biomass quantity is collected from
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agricultural residues locally available in the study area,
primarily from date palm fronds, wheat straw, and corn stalks.
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Fig. 6. The average monthly availability of biomass at

the selected site

In this study, a biogas generator with an auto-sized
configuration and a rated capacity of 500 kW is considered.
The capital investment for the biomass-based generation
system is assumed to be $3000 per kilowatt, while the
replacement cost is estimated at $1250 per Kkilowatt.
Furthermore, the operation and maintenance cost is set at
$0.10 per operating hour per kilowatt, reflecting standard
industry assumptions. The biomass engine has an operating

Table 1. Specifications of the Battery Storage System

lifetime of 20,000 hours. The system employs a gasifier
engine to convert solid biomass into gas with high efficiency,
which is then used in internal combustion (IC) engines for
power generation.

The biomass generator output power, denoted as Py(t),
is calculated using the following equation (Eteiba et al., 2018) :

P, () = (%2) [0 - Fpy| )

F Hy
Where
Po Biomass-based power generation (kW)
Fn No-load fuel consumption (kg/h/kW)
F Low specific fuel consumption (kg/h/kW)
Hg Low heating value of producer gas (MJ/kg)
Hw Low heating value of wood (MJ/kg)
B Biomass feed rate (kg/h)
Ng Number of generators
g Gas efficiency
Pg Generator rated capacity (kW)

Modeling of the battery bank system

Batteries are essential components of hybrid energy
systems, functioning as storage units for excess energy
produced by renewable sources, which can subsequently be
utilized to satisfy load demand. The specifications of the
batteries utilized in the hybrid system are outlined in Table 1.

Battery Specification Value Battery Specification Value
Nominal electric potential (V) 600V Nominal energy (kWh) 1000 kWh
Nominal capacity (Ah) 1670Ah Roundtrip efficiency (%) 90%
Maximum charging current (A) 1670A Maximum discharging current (A) 5000 A
The first phase of charge (%) 100% Minimal level of charge (%) 20%
Lifetime (years) 15 years Throughput (KkWh) 3000000 kWh

RESULTS AND DISCUSSION

Hybrid system optimization results

Table 2 presents the optimization outcomes for
various hybrid energy system configurations. It outlines the
rated capacities (in KW) of individual system components and
indicates the number of lithium-ion batteries used in each
setup. The table also includes key economic indicators, such
as the net present cost , levelized cost of energy, annual

operating cost, and initial capital investment. Among the
evaluated configurations, the PV/Wind/Biomass/Batteries
system exhibits the most favorable economic performance. It
requires the fewest batteries and achieves the lowest values
across all economic metrics, including NPC, LCOE, annual
operating cost, and upfront capital cost. The optimal
configuration results in an NPC of 9.62 million USD and an
LCOE of 0.716 USD/kWh.

Table 2. Optimization results for different configurations of hybrid energy systems (based on a 25-year project lifetime)

System PV Wind Biomass No. of Lithium-lon Converter NPC LCOE Operating Initial Capital
Configuration (KW) Turbine(kW) (kW)  Batteries AIMWh) (kW) $) ($) Cost($lyr)  Cost($)
PVWind/Biomass/Batteries 1409 100 500 5 541  962M 0.716 120,374 8.06 M
PV/Wind/Batteries 1401 100 - 8 623 109M 0811 171,499 867 M
PV/Biomass/Batteries 2647 - 500 5 681 122M 0910 133,139 105M
P\/Batteries 2529 - - 8 568  132M 0.982 182,155 108 M

Figure 7 illustrates the comparison of NPC and LCOE
for four hybrid energy system configurations.

Among all systems, the PV/Wind/Biomass/Batteries
configuration demonstrates the lowest NPC (9.62 million
USD) and lowest LCOE (0.716 USD/kWh), indicating
superior cost-effectiveness. In contrast, the P\V/Batteries-only
system shows the highest NPC (13.2 million USD) and
highest LCOE (0.982 USD/kWh), making it the least
economical option. The inclusion of both wind and biomass
components  significantly  reduces long-term  costs,
confirming the economic advantage of integrating multiple
renewable sources with energy storage.

Table 3 presents the cost breakdown of the optimal
PV-wind-biomass hybrid energy system equipped with
lithium-ion batteries. It details the capital cost, replacement
cost, operating cost, salvage value, and resource cost for each
system component. Additionally, the table summarizes the

total cost of each component and provides the overall NPC of
the entire hybrid system.

PY/Wind/Biomass/
Batteries

PV/Windf
Batteries

PV/Biomass/
Batteries
Hybrid Energy Systems

Fig. 7. Net Present Cost and and levelized cost
comparison for various hybrid energy
systems

PV
Batteries
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Table 3. Cost distribution of components in the optimal P\V—wind-hiomass hybrid system

Component Capital Cost (USD) Replacement Cost (USD)  O&M (USD) Salvage (USD) Total (USD)
Generic IMWh Li-lon $35M $742,479 $646,375 $139,742 $4.75M
Biogas generator $15M $35,438 $56,390 $14,912 $159 M
Flat plate PV $28M $0.00 $182,162 $0.00 $3M
Converter $162,167 $34,401 $0.00 $6,474 $190,093
XANT M-21 [100kW] $80,000 $0.00 $5,171 $0.00 $85,171
System Total $8.06 M $812,319 $904,940 $161,129 $9.62 M

Figure 8 illustrates the detailed cost distribution of
each component within the optimal hybrid energy system. As
shown, the flat plate PV system accounts for the highest

Table 4. Summarizes the production of each
component in the ideal photovoltaic-
wind-biomass system.

capital cost. The 1 MWh lithium-ion batteries contribute the ) Yearly Energy ~ Contribution
- Production o
most to the operating, replacement, and salvage costs. Output (kWh/yr) (%0)
Generic Biogas Genset 282,206 8.2%
1 - Generic flat plate PV 2,823,744 82%
o ik XANT M-21 [100kW] 337,624 9.8%
" = G Total 3443574 100%
System lnw;nﬂ EXCESS E|ectriCIty 2,347,518 682%
60 I XANT M-21 [100kW)
@ 300
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Fig. 8. Capital, replacement, operating, and salvage costs of
System components in the optimal hybrid energy
configuration

Table 4 presents a summary of the energy output from
each component of the optimized PV-wind-biomass hybrid
power system. Among the three sources, the solar
photovoltaic (PV) system contributed the highest share,
accounting for approximately 82% of the total electricity
generated. Wind turbines produced around 9.8%, while the
biomass unit contributed the smallest portion, generating
about 8.2% of the total output. Additionally, the system
produced 68.2% more electricity than the load demand,
indicating a significant surplus. Figure 9 illustrates the
monthly electricity generation profile of the hybrid system.
As indicated, the highest electricity production occurs in
August, whereas December marks the lowest energy
generation throughout the year.

Fig. 10 illustrates the biomass generator’s power
output over a 24-hour period across the year for the optimized
hybrid energy system. The electrical output ranges from a
minimum of 250 kW to a maximum of 500 kW, with a mean
electrical output of 256 kW. The annual electricity production
from the biogas genset is 282,206 kWh/year. The system
consumes 885 tons of biomass per year, resulting in a specific
fuel consumption of 2.20 kg/kWh, and an overall fuel energy
input of 946,476 kWh/year. The mean electrical efficiency is
reported as 29.8%. Operational parameters indicate a total of
1,102 hours of operation per year, 515 starts/year, and an
operational life expectancy of 18.1 years. The capacity factor
is 6.44%, with a fixed generation cost of $10.0/hour, and zero
marginal generation cost.

112

Feb  Mar

Oct

Jan Apr May  Jun  Jul Nov  Dec

Month

Aug Sep

Fig. 9. Monthly power generation profile of the ideal
hybrid energy system

Fig. 10. Biomass generator power profile.

Figure 11 presents the annual power output profile of
the photovoltaic system, illustrating its 24-hour generation
pattern across all days of the year for the optimal hybrid
energy configuration. The maximum output power recorded
is 1,388 kW, while the average output power is 322 kW. The
PV system produces a mean daily energy output of 7,736
kWh/day, resulting in a total annual production of 2,823,744
kWh/year. It operates for approximately 4,368 hours per year,
achieving a capacity factor of 22.9%. The LCOE is 0.0822
$/kWh, and the system exhibits a PV penetration rate of
272%, indicating its significant contribution to the overall
hybrid energy system.

1,400 kW

1,120 kW

Fig. 11. Photovoltaicﬁbower generation pattern.
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Figure 12 presents the annual power output profile of
the wind turbine in the optimal hybrid power system, showing
its variation over a 24-hour cycle throughout the year. The
wind subsystem has a total rated capacity of 100 kW, with a
maximum output of 100 kW and an average output of 38.5
kW. The system operates for approximately 7,569 hours per
year, delivering a total annual energy production of 337,624
kWh/year. The capacity factor is 38.5%, reflecting consistent
utilization across the year. The wind penetration into the
overall system is 32.5%, and the LCOE for wind generation
i50.0195 $/kwh.

2

50 180 270 385

Fig. 12. Annual wirj{amturbine power profile

Figure 13 shows the daily and seasonal variation in the
state of charge (SOC) of lithium-ion batteries throughout the
year in the optimal hybrid energy system.The SOC ranges
from a minimum of approximately 20% to a maximum of
100%, indicating controlled charge/discharge behavior
throughout the year. The battery bank consists of 5 lithium-
ion units, each rated at 1 MWh, arranged in 5 parallel strings
with a bus voltage of 600 V. The total nominal capacity is
5,000 kWh, with 4,000 kWh usable. The batteries deliver an
annual energy input of 260,626 kWh/year and output of
235,087 kWhlyear, resulting in energy losses of 26,091
kWh/year and minor storage depletion of 552 kWh/year. The
annual energy throughput is 247,803 kWh/year. The system
exhibits 33.7 hours of autonomy and is expected to last 15

years, with a lifetime throughput of 3,717,046 kwh.
State Of Charge

Fig. 13. Yearly battery SOC pattern

Sensitivity analysis

Sensitivity analysis serves as a crucial approach for
examining how a system responds to changes or uncertainties
in input parameters. In this study, it is applied with a focus on
techno-economic aspects to understand how key factors
impact the net present cost and the levelized cost of electricity.
The variables analyzed include the discount rate, inflation
rate, project lifetime, capital cost, wind speed, solar
irradiance, and the allowable capacity shortage.
Sensitivity of economic indicators to capacity shortage levels

Figure 14 shows the sensitivity analysis of the NPC
and the COE with respect to varying capacity shortage
percentages ranging from 0% to 10%. It is evident that both
NPC and COE decrease consistently as the allowed capacity
shortage increases. At 0% capacity shortage, where the
system is designed to fully meet the load at all times, the NPC
and COE are at their maximum values of approximately
$11.2 million and 0.71 $/kWh, respectively. As the capacity
shortage increases to 2%, 4%, 6%, 8%, and 10%, the NPC
declines steadily to a minimum of $4.1 million, and the COE
decreases to 0.24 $/kWh. This trend highlights the economic

benefit of relaxing the reliability requirement, as it allows for
downsizing system components and reducing overcapacity.
The reduction in NPC and COE from 0% to 10% is
approximately 63.39% and 66.2%, respectively.

Figure 15 illustrates the relationship between
predefined capacity shortage limits and the resulting changes
in both capacity shortage and excess energy generation. As
expected, the obtained shortage percentage increases
proportionally, reflecting a relaxation in system reliability
constraints. Simultaneously, the percentage of excess energy
generation shows a marked decline from approximately 25—
26% at 0-4% capacity shortage to around 10% at 10%
shortage. This decline suggests that systems designed under
tighter reliability constraints tend to be oversized, resulting in
a higher amount of surplus electricity.

— Total Net Present Cost ($) ost of Energy (5

Capacity Shortage (%)

Fig. 14. Sensitivity of NPC and COE to Capacity Shortage
Levels.

mm Octained capacity shortage

Optimal parameters (%)

9 0 2 4 6 8 10
Capacity shortage (%)

Fig. 15. Impact of capacity shortage on reliability and
excess generation.

Effect of capital cost variation on economic performance

Figure 16 depicts the impact of capital cost variations
on the economic performance of the optimal hybrid
renewable energy system.

13| /== Net Present Cost {M$)
—— Cast of Energy ($/kWh}

—40 =30 —20 -10 0 10 20 30 40
Capltal Cost Variation (%)

Fig. 16. Sensitivity of NPC and COE to Capital Cost
Variation
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As observed, both the NPC and COE exhibit a nearly
linear increase with rising capital costs. When capital cost is
reduced by 40%, the system achieves the lowest NPC and
COE, approximately $6.4 million and $0.17/kWh,
respectively. Conversely, a 40% increase in capital cost
results in the highest values, with NPC reaching nearly $12.9
million and COE around $0.33/kWh. These results
emphasize the strong dependency of system economics on
capital investment, highlighting the importance of cost-
efficient component selection and market price trends in
optimizing hybrid renewable energy systems.

Effect of project lifetime on economic performance

Figure 17 illustrates the impact of extending the
project lifetime from 20 to 30 years on the total Net Present
Cost and the Levelized Cost of Electricity (COE) for the
optimal hybrid energy system. The results show that as the
project lifetime increases, the NPC gradually rises from
approximately $9.25 million at 20 years to around $9.9
million at 30 years. This increase is attributed to the
accumulation of operational and maintenance costs over a
longer time horizon.

Conversely, the COE decreases steadily from about
$0.775/kWh to approximately $0.665/kWh as the project
duration extends. This reduction in COE is due to the fixed
capital investment being spread over a longer operational
period and greater total energy production.

These findings highlight a key trade-off in system
planning: while longer project durations lead to higher
cumulative costs, they play a key role in enhancing the system’s
economic efficiency by lowering the cost per unit of energy.

—— Total Net Present Cost ($ Cost of Energy ($

20 22 24 26 28 30
Project Lifetime (years)

Fig. 17. Effect of System Lifetime on NPC and COE

Effect of solar irradiation on economic performance

The sensitivity analysis investigates the effect of
varying solar irradiation on the techno-economic performance
of the optimal hybrid energy system. The base case average
solar irradiation is 6.44 kWh/m?/day, and it is increased
progressively up to 7.2 kWh/mday (an increase of
approximately 11.78%). As shown in Fig. 18, both the NPC
and the COE exhibit a declining trend with the increase in solar
irradiation.  Specifically, the NPC decreases from
approximately $9.63 million at 6.44 kWh/m?/day to around
$9.01 million at 7.2 kWh/m2/day, indicating a reduction of
about 6.44%. A similar trend is observed in the COE, which
declines from $0.715/kWh to $0.685/kWh, corresponding to a
reduction of about 4.2%. This inverse relationship reflects that
higher solar availability improves the performance of the PV

subsystem, reduces reliance on other costly generation sources,
and leads to a more cost-effective system configuration.

65 6.6 6.7 68 69 7.0 71 12
Solar Irradiation (kWh/m?/day)

Fig. 18. Variation in NPC and COE as a Function of Solar
Irradiance

Effect of wind speed variation on economic performance
Wind speed, being inherently variable, was treated as
an uncertain parameter and included in the sensitivity
analysis. The baseline average annual wind speed at the study
site is 6.03 m/s. To evaluate its effect on the techno-economic
performance of the system, the wind speed was progressively
increased up to 7.0m/s. Figure 19 presents the impact of
increasing wind speed on the Net Present Cost and Levelized
Cost of Electricity.

—— Net Present Cost ($)

6.0 6.2 64 6.6 6.8 10
Wind Speed (m/s)

Fig. 19. Sensitivity of NPC and LCOE to Wind Speed
Variation

The analysis reveals that higher wind speeds
contribute to improved economic performance, as both NPC
and COE decline with increased wind availability. When the
average wind speed increases from 6.03 m/s to 7.0 m/s—a
16% rise—the NPC decreases from approximately $9.63
million to $9.11 million, while the COE drops from
$0.716/kWh to $0.682/kwWh.This trend indicates an
improvement in the overall economic performance of the
system with enhanced wind availability. However, the decline
in both NPC and COE is not entirely uniform. Between wind
speeds of 6.4 m/s and 6.6 m/s, both indicators show minimal
change, and the curves flatten, suggesting diminishing
marginal returns at higher wind speeds. This behavior can be
attributed to system design limitations or the saturation of
wind turbine output at those levels. In summary, the analysis
confirms that higher wind speeds can enhance the cost-
effectiveness of the hybrid energy system, though the benefits
tend to stabilize beyond a certain threshold.Effect of discount
and inflation rates on economic performance

The discount rate and inflation rate are crucial
financial factors that can greatly affect the economic viability
and overall performance of a hybrid energy system. In this
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study, a sensitivity analysis was carried out to evaluate how
changes in these parameters influence system economics. The
discount rate was adjusted between 8% and 11% to observe
its effect on both the NPC and the COE. Figure 20(a) shows
that increasing the discount rate leads to a noticeable decline
in the NPC, while the COE shows a moderate rise. When the
discount rate increases from 8% to 11%, the NPC drops from
approximately $9.63 million to $9.01 million, reflecting a
6.4% reduction. Meanwhile, the COE increases from
$0.88/kWh to $0.92/kWh, indicating a rise of about 4.5%.
Similarly, the inflation rate was varied from 2% to 4% to
observe its influence. As shown in Fig. 20(b), an increase in
the inflation rate results in a higher Net Present Cost and a
lower Cost of Electricity (COE). When the inflation rate rises
from 2% to 4%, the NPC increases from approximately $9.62
million to just over $10 million, representing a growth of
about 4.1%. In contrast, the COE declines from around
$0.715/kWh to $0.6/kWh, marking a reduction of nearly
16%. These results emphasize the importance of accurately
forecasting economic parameters, as they play a crucial role
in long-term financial planning and viability of integrated
renewable energy setups.

b)

T 735 100

Fig. 20. Sensitivity of NPC and LCOE to (a) Discount
Rate and (b) Inflation Rate

Model Validation through Comparative Analysis

To verify the reliability of the simulation outcomes, a
comparative analysis was conducted with the study by
Youssef et al. (2023), which modeled a similar hybrid PV-
Wind-Biomass-Battery ~ system in  Egypt's New
Administrative Capital. While both studies used comparable
modeling methods and battery configurations, the present
study addressed a significantly higher energy demand (2737
kWh/day vs. 2656 kWh/day) and peak load (2846 kW vs.
371.8 kW). These differences led to increased biomass use
(885 vs. 216 tons/year) and a higher rate of excess electricity

(68.2% vs. 26.8%), contributing to a higher LCOE (0.716 vs.
0.382 USD/kWh). Nonetheless, the energy mix remained
consistent, with PV contributing the majority share in both
cases (81.3% vs. 74.4%). This alignment supports the validity
of the model under different system scales and conditions.

The relatively high excess electricity in the optimized
system is not a result of inefficiency but rather a design choice
to ensure uninterrupted power supply in an off-grid context
with limited battery storage (2 x 1 MWh). HOMER's
algorithm tends to oversize renewable generation
(particularly PV) to guarantee that all load is covered year-
round, even during periods of low resource availability.
During times of low demand or high solar output, this leads
to surplus electricity that cannot be stored. However,
HOMER penalizes unmet load more heavily than excess
energy, making surplus a reasonable trade-off to ensure
system reliability. In isolated systems such as this, prioritizing
energy security (even at the cost of higher excess) is both
technically justified and economically acceptable.

CONCLUSION

Hybrid renewable energy systems offer a practical way
to expand energy access in rural agricultural areas. In this
research, a hybrid system combining solar panels, wind
turbines, biomass generators, and lithium-ion batteries was
developed and optimized to supply the energy needs of a
poultry and livestock farm in Egypt’s New Valley Governorate.
The simulation results from HOMER software showed that the
PV, wind, biomass, and battery combination was the most
economical setup, with a total net present cost of $9.62 million
and a levelized cost of electricity of $0.716 /kWh.

Photovoltaic energy contributed the largest share of
electricity generation (82%), supplemented by wind (9.8%)
and biomass (8.2%). Sensitivity analyses highlighted the
importance of system flexibility and resource availability in
achieving optimal performance. Overall, the findings
demonstrate the viability of tailored hybrid systems in
improving energy reliability and economic sustainability in
remote farming communities.
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