ISOLATION AND IDENTIFICATION OF HEAVY-METAL RESISTANT SOIL BACTERIA

Abd, W. M.¹; R. R. Shahin²; H. A. Khater² and M. A. Ali³

1 Dept. of Soil Sciences and Water Resources, College of Agric., Baghdad University, Iraq

2 Dept. of Soil Sciences, Fac. Agric., Cairo University, Egypt

3 Agric. Microbiology Dept., Fac. Agric., Cairo University, Egypt

ABSTRACT

Normal alluvial (FFS), calcareous (WNS) as well as sewage farm (ARS) soil samples amended with peptone nutrient solution were subjected to increasing concentrations of Pb, Cd, Zn and Ni then incubated for 7 days at 25°C. Total bacteria recorded the highest colony forming unites (cfug⁻¹) in Abu-Rawash soils (ARS) even in the presence of increasing levels of Cd, Zn and Pb followed by the normal alluvial (FFS) and calcareous (Wadi- El- Natrun) soils. Under Ni stress, calcareous soil showed the highest population density which may be due to the lime effect. In the alluvial soil, counts were substantially reduced to 1% compared to plain soil applying only 3 mg Cd/kg soil while it was 10% in Abu-Rawash soil. For Pb- and Zncontaminated soils, microbial density in alluviall soil recorded almost the same density as in Abu-Rawash and was higher than in calcareous soil. Dehyrogenase activity (DEH) decreased by 32% in the FFS, 35% in ARS and 17% in WNS as the applied Cd increased from 3 to 8 mg/kg soil. Increased amounts of Zn and Ni inhibited dehydrogenase (DEH) activity by higher 36-44% in FFS and ARS compared to that of WNS (17-22%). A significant positive correlation coefficient (P<0.05) was observed between microbial counts and DEH activity in almost all examined heavy metalpolluted soil. Sixty-seven bacterial isolates from the three heavy-metal-contaminated soils were in vitro examined for their ability to tolerate increasing concentrations of Cd, Zn, Pd and Ni in their culture media. A screening of 67 bacterial isolates was conducted on solid nutrient agar medium supplemented with increasing concentrations of the investigated metals. Nineteen isolates were selected according to their heavy metal tolerance. Some isolates were found to be able to grow in a medium containing up to 700 mg Pb/kg others were tolerant to 75 mg Zn/kg. A maximum tolerable level of 25 mg Ni/kg soil was recorded with the isolates Nos. B-1, B-24, B+27, B-30, B+41, B+55 and B+64. The cultural, morphological and physiological characteristics of the heavy metal-resistant isolates were examined. The majority were Gram-positive long rod-shaped motile sporeforming isolates belonging to the genus Bacillus. The minimum inhibitory concentrations (MIC) of the examined heavy metals were designated for these isolates in submerged liquid cultures. For all examined isolates, culture OD600 increased with time reaching a maximum after 10 day and declined thereafter. Among the examined isolates, the two Gram-positive Bacillus isolates Nos. B-48 and B+41 were the most tolerant to all heavy metals. The identities of these isolates were analyzed using the Sole-Carbon Cource Utilization Profile (Biolog, Inc., Hayward, CA2000). The isolate No. B-48 was identified as Bacillus amyloliquefaciens and No. B+41 as Bacillus thuringiensis.

Keywords: Bacterial resistance, Heavy metals, dehydrogenase activity, sewage farm

INTRODUCTION

Urban soils have been affected by elevated levels of heavy metals since the beginning of industrialization. In many situations, these heavy metals pose a considerable threat to the environment. Soil quality criteria are presently depends on total metal concentrations in soil. The environmental stress caused by heavy metals, generally, decreases the diversity and activity of soil bacterial populations leading to a reduction of the total microbial biomass, decrease in numbers of specific populations such as rizhobia and a shift in microbial community structure (Wang *et al.*, 2010). Soil microbial population responses to heavy metal contamination provide a relevant model for ecological studies to assess the influence of environmental characteristics (Guo *et al.*, 2009).

Various microorganisms show a different response to toxic heavy metal ions that confer them with a range of metal tolerance (Valls and de Lorenzo, Several studies have demonstrated that metals influence microorganisms by affecting their growth, morphology and biochemical activity (Tsai et al., 2005 and Pérez-de-Mora et al., 2006) and diversity (Dell"Amico et al., 2008). The response of the bacterial populations to heavy metal contamination depends on the concentration and bioavailability of the metal itself and is dependent by multiple factors such as the type of metal and microbial species (Hassen et al., 1998). Heavy metal contaminated environments harbour organisms, both prokaryotes and eukaryotes, able to deal with pollution (Baker and Banfield, 2003). The ability of some microorganisms to tolerate heavy metals and the ability of some to promote transformations that render them less toxic, make organisms that live in heavy metal contaminated sites potentially useful in bioremediation. High concentrations of metals (both essential and non-essential) harm the cells by displacing the enzyme metal ions, competing with structurally related nonmetals in cell reactions and also blocking functional groups in the cell biomolecules (Hetzer et al., 2006).

Studies on the effects of metals on soil microbiome have been conducted showing that short term contact causes the selection of resistant bacteria within weeks. A more prolonged exposure to metals slowly selects resistant bacteria. On the other hand, long term exposure to metals leads to the selection/adaptation of the microbial community which then thrives in polluted soils (Pérez-de-Mora *et al.*, 2006 and Chihching *et al.*, 2008). The presence of different metals together may also have greater adverse effects on the soil microbial biomass/activity and diversity than those caused by single metals at high concentrations (Renella *et al.*, 2005).

The aim of this study was to investigate the diversity, the metal tolerance and identification of tolerant bacterial species or strains present in different soil types heavely contaminated with Cd, Pb, Zn and Ni metals. Moreover, heavy metal tolerance of the isolated populations was also tested.

MATERIALS AND METHODS

Three surface soil (0-20 cm depth) samples were collected to represent alluvial soil (FFS) from the Experimental Station of the Faculty of Agriculture, Cairo University, Giza, calcareous soil from Wadi-El-Natrun (WAS) and a sewage farm sandy soil from Abu-Rawash (ARS). The collected soil samples were air-dried, crushed, and stored as fine earth (< 2mm). Samples were analyzed for pH and EC in 1:2.5 soil: water extract where soluble cations and anions were measured according to McLean (1982). Particle size distribution was assessed by the pipette method adopted by Gee and Bauder (1986) while organic matter by wet oxidation method and total carbonate as described by Sparks (1996). Aqua-regia extractable heavy metals (ISO 11466, 1995) and those extracted with DTPA (1: 2 soil: extractant ratio) were performed according to Lindsay and Norvell (1978) and ISO 14870 (2001). Physical and chemical soil characteristics are summarized in Table (1).

Portions of 100 g from each soil type were weighed in 150 ml plastic cups and artificially contaminated with increasing concentrations of Cd (0,3,5 and 8 mg/kg), both Pb and Zn (70,250 and 400 mg/kg) and Ni (50,100 and 400 mg/kg) as sulfate solutions. Ten ml aliquots of 1% peptone/water solution were added to each soil cup which was further watered up to the field capacity (F.C.) using distilled water then incubated for 30 days at 25 °C with maintaining the F.C. moisture level throughout the incubation period. For each soil type, peptone-amended soil cups without heavy metals were included for comparison. At the end of the incubation period, soils were sampled and analyzed for DTPA extractable Cd, Zn, Pb and Ni besides total plate bacterial counts.

Enumeration, isolation, and identification of heavy-metal resistant soil bacteria

The bacterial densities were counted in soil samples serially diluted in 0.5% NaCl and plated onto nutrient agar medium (Atlas, 2000). Plates were incubated at 25 °C for 10 days where the colony forming unites (cfug⁻¹) were enumerated (Kapoor and Paroda. 2007). Well-separated colonies with different morphological features were picked on nutrient agar slants then the purity of these isolates was checked by Gram staining with repeated streaking on nutrient agar plates. A total of 67 bacterial candidates was isolated from the three soil types contaminated with increasing heavy metal concentrations. Bacterial isolates were maintained throughout the work in nutrient broth culture containing 15 % (v/v) glycerol at 4.0 °C (Darwesh, 2008). The identity of the isolates was primarily designated relying on some morphological, cultural and biochemical traits described in Bergy's Manual of Determinative Bacteriology (Krieg and Holt, 1984). The isolates were conclusively identified adopting a Sole-Carbon-Source-Utilization Profile analysis using a BIOLOG GP2 MicroPlate™ Gram - positive Identification Test Panel.

Screening the bacterial isolates for heavy metal resistance

Bacterial isolates were *in vitro* examined for their heavy metal resistance on solid and in liquid cultures according to Bisht *et al.* (2012). A loopful of 24-old slant culture was inoculated into 5 ml sterile distilled water. After vortexing; 0.1 ml of the culture suspension was inoculated onto agar medium supplemented with increasing concentrations of the examined heavy metals at the following concentrations (mg/l):

Level	Cd	Zn	Pb	Ni
	Α	В	С	D
1	2	25	100	25
2	5	50	300	50
3	8	75	500	75
4	11	100	700	100

Table 1: Physical and chemical characteristics of the investigated soil types.

Soil Analysis		Faculty's Farm (FFS)	Abo Rawash (ARS)	Wadi El-Natrun (WNS)
	C.S.	3.5	20.5	24
Particle size distribution	F.S.	13.5	34.5	32.3
%	Silt	23	25.5	27.9
	Clay	60	19.5	15.8
	Class	clay	Sandy loam	Sandy loam
pH (1:2.5)	7.76	7.32	8.06	
EC dS/ m (1:2.5)		1.43	1	1.26
Soluble anions (me/l) (1:2.5)	HCO₃	3.3	4.1	2.9
	Cl	4	2.6	3.8
	SO ⁼ ₄	7.5	3.6	6.6
Soluble cations (me/l)(1:2.5)	Na⁺	7	3.1	5.5
	K ⁺	0.3	0.8	0.2
	Ca ⁺⁺	5.4	4.3	6.4
	Mg ⁺⁺	2.2	2.1	1.2
O.M	%	1.3	6.1	0.8
CaCO₃	%	1.1	2.6	14.4
Total N	%	0.14	0.24	0.08
Heavy metals Pb	AQ.R*	2.75	133.15	10.2
(mg/kg soil)	DTPA	0.76	6.63	1.2
Cd	AQ.R	2.75	0.9	0.06
	DTPA	0.03	0.14	0.02
Zn	AQ.R	77.8	446.6	55.1
	DTPA	5.5	23.06	7.6
Ni	AQ.R	4.03	2.23	0.48
	DTPA	0.55	0.1	0.05

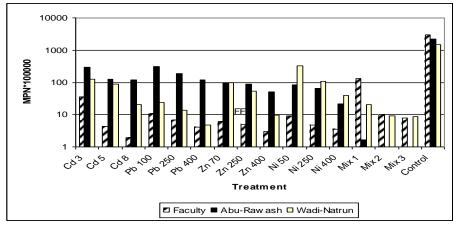
AQ.R*= Aqua-Regia extract

C.S.: Cours Sand F.S.: Fine Sand

Cultures were incubated at 30°C for 10 days then growth was visually described as follows: -, no growth; +, poor growth; ++, good growth and +++,

exuberant growth. Some selected heavy metal resistant isolates were further challenged for minimum inhibitory concentrations (MIC) of the examined heavy metals. Growth of the isolates was monitored in 250-ml Erlenmeyer flasks containing 50 ml nutrient broth supplemented with the highest tolerable concentrations of heavy metals resulted from the abovementioned screening tests. Submerged growth was followed by measuring the optical density at 600nm (OD $_{600}$). Cultures were incubated on a shaker incubator at 30°C for 10 days. Bacterial growth was monitored by measuring the optical density at 600 nm (OD $_{600}$) (Chien *et al.*, 2008).

Dehydrogenase activity in soil


Dehydrogenase activity was determined in the soils as described by Casida et~al.~(1964) and Blidar et~al.~(2009) with the following modification: 1 g soil was mixed with 0.01 g of CaCO $_3$ incubated with 1 ml 3% 2, 3, 5 triphenyl tetrazolium chloride (TTC) and 3 ml water at 37 °C in darkness. After 6 h, 10 ml methanol were added, and the suspension was homogenized, filtered and washed with methanol until the reddish colour caused by the reduced TTC (triphenyl formazan,TPF) had disappeared from soil. The optical density was measured at 485 nm in comparison to those of triphenyl formazan (TPF) standards. Results of enzyme activities are presented on oven-dry soil weight basis.

RESULTS AND DISCUSSION

The total bacterial counts in the three investigated soils spiked with increasing levels of Pb, Cd, Zn and Ni are presented in Figure (1). The highest count was recorded in Abu-Rawash (ARS) soil even in the presence of increasing levels of Cd, Zn and Pb followed by the normal alluvial (FFS) and calcareous (WNS) soils. Abu-Rawash soil (ARS) which is known to be enriched for long time with organic wastes sourced from the sewage sludge effluents. This might enhance building up high microbial populations in such soil type which might explain the superiority of this soil type in its microbial population density over other examined soils. In this regard, Kellya *et al.* (1999) stated that sludge-amended soils exhibit a significant increase in counts of culturable bacteria.

Under stresses of Ni, Wadi- El-Natrun soil (WNS) recorded the highest bacterial density followed by Abu-Rawash (ARS) and the FFS soils. Most probably the high lime content of Wadi-Natrun soils reduces the toxic effect of Ni ions on the microbial populations in such soil type. McNear *et al.* (2007) found that in crop plants, high soil Ca reduces Ni uptake and phytotoxicity and so it is probably has a similar effect on soil microbial populations. Moreover, the relatively high pH of Wadi-EL-Natrun calcareous soils might alter the applied Ni speciation into less toxic forms. These results corroborate the findings reported by Kukier and Chaney (2004) referring to a similar reduction in available-Ni with increasing pH due to liming.

Figure (1) shows decreased densities of microorganisms in different magnitudes due to increasing the concentration of the applied heavy metals in all tested soil types. Microbial populations inhabit alluvial soil (FFS) might be more sensitive to stresses exerted by the investigated heavy metals and thus the counts conspicuously reduced to nearly 1% of the natural density by applying only 3 mg Cd/kg soil while it was 10% in Abu-Rawash (ARS) soil. In addition, increasing Cd in alluvial soil (FFS) from 3 to 8 mg/kg resulted in decreased bacterial counts by 95% while reductions of 83 and 61% for Wadi-El-Natrun (WNS) and Abu-Rawash (ARS) soils. Were recorded probably the indigenous microbial populations in Abu-Rawash (ARS) soil are relatively more adapted to high level of Cd toxicity than in alluvial (FFS) one. Regarding Pb and Zn- contaminated soils, population densities could be arranged in an order FFS = ARS > WNS, whereas in Ni-contaminated the order soil population densities was (FFS) >(ARS) > (WNS).

Metal levels	Cd	Pb	Zn	Ni
1	3	100	70	50
2	5	250	250	100
3	8	400	400	400

Fig. 1: Total plate counts (cfug⁻¹) of soil bacteria in different soil types as affected by different concentration of heavy metals (mg/kg).

A surprising effect was observed with the heavy metal mixture, where the highest microbial count was recorded in the alluvial (FFS) soil contaminated with a heavy metal mixture (Cd1+Pb1+Zn1+Ni1) and even at higher combination levels while didn't show up in Abu-Rawash (ARS) soil. However, data show that the presence of metal combinations may have adverse effects on soil microbial biomass and diversity than those caused by single metals at high concentrations which is in agreement with Renella *et al.* (2005).

Dehydrogenase (DEH) activity reflects the total oxidative activity of the microbial biomass. Mean values of DEH activity were significantly lowered due to increased heavy metal levels in the amended soils (Fig. 2). The

inhibition rate of DEH activity was significantly higher in FFS sample and ARS than that in WNS. Dehyrogenase activity decreased by 32% in FFS, 35% in ARS and 17% in WNS as the applied Cd increased from 3 to 8 mg/kg soil. Increasing Zn and Ni also inhibited dehydrogenase activity by higher percentages (36-44%) in FFS and ARS compared to WNS (17-22%). The presence of relatively higher $CaCO_3$ content (144 g/kg) in Wadi-El-Natrun soil and its corresponding high pH of 8.05 might help mitigate heavy metal toxicity which may adopt the production of dehydrogenase enzyme. Mijangos *et al.* (2010) stated that soil liming significantly increased dehydrogenase activity (as an indicator of soil microbial activity) which related to the increased soil pH.

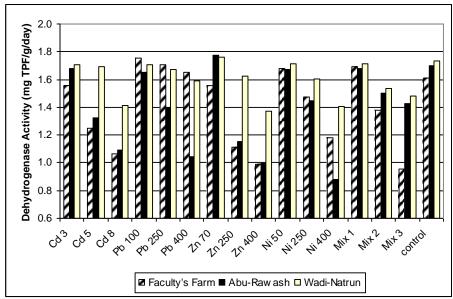


Fig. 2: Dehydrogenase activity of the three soil types as affected by increased applied rates of Cd, Pb, Zn and Ni.

A significant positive correlation coefficient (*P*<0.05) between bacterial counts (Table, 3) and dehydrogenase activity. As the microbial count increased, dehydrogenase activity increased with different rates depending on soil type. In Wadi-El-Natrun soil (WNS) the slope of dehydrogenase / log count was much higher than that of Faculty's farm soil (FFS) in all the tested metals. This indicates the positive effect of high bacterial density on dehydrogenase activity in calcareous soil as compared to alluvial one which conform data reported by Mijangos *et al.* (2010).

Table 3. Regression between bacterial MPN and dehydrogenase activity in the Investigated soils spiked with Cd, Pb, Zn and Ni metals

		FFS	ARS	WNS
Cd	R	0.8858*	0.6461	0.8765*
	slope	0.1735	0.1942	0.3436
Pb	R	0.8690*	0.8441*	0.7966
	Slope	0.0497	0.1058	0.2434
Zn	R	0.8345*	0.7687	0.8690*
	slope	0.2406	0.2412	0.3929
Ni	R	0.7635	0.8001	0.8978*
	slope	0.1729	0.1548	0.5428

Heavy metal applications significantly inhibited the soil DEH activity which is in harmony with previous reports of Marzadori *et al.* (1996) and Garc´ıa-Gil *et al.* (2000) who found that DEH activity was retarded toxic effect of heavy metals added to the soil. Sardar *et al.* (2007) stated that DEH activity appeared to be one of the most sensitive parameters among the selected enzyme activities and it could be used as a good indicator of soil ecotoxicological test caused by heavy metals.

A screening was conducted using 67 bacterial isolates on solid nutrient agar media supplemented with increasing concentrations of the investigated metals. For each isolate, the maximum tolerable level of each metal was recorded. Figure (3) show that bacterial isolates were screened to only 19 heavy-metal tolerant ones. It was found that some of the screened isolates were tolerant to up to 700 mg Pb/kg (e.g.isolates Nos. B-24, B+27, B-30, B+41, B+55, B+64 and B+67), while only four isolates Nos. B-21, B+27, B+41 and B+64 tolerated a maximum Cd concentration of up to 11mg Cd /kg. Three isolates *i.e.*No.B-1, B+41 and B+67 were tolerant to 75 mg Zn/kg, while the maximum tolerable level of Ni (25 mg/kg) was recorded for isolates Nos. B-1, B-24, B+27, B-30, B+41, B+55 and B+64.

The screened isolates were grown in liquid nutrient medium amended with the previously designated metal concentrations. Growth of these selected isolates was monitored by measuring the culture turbidity (optical density, OD₆₀₀) and the results are illustrated in Figure (4). All the tested isolates showed different responses towards high metal stresses. The optical density increased with increasing incubation period and the increases were different according to the stress of heavy metal which reached its maximum after 3 days and declined thereafter in all treatments. Despite the increased concentrations of the examined heavy metal in the growth medium, a sustainable growth was exhibited by the isolates B-48 and B+41. Their morphology showed that they are G-positive, long-rode-shaped, motile sporeforming Bacilli. Cell wall constituents have an important role affecting the immobilization of heavy metals (Jjemba, 2004).

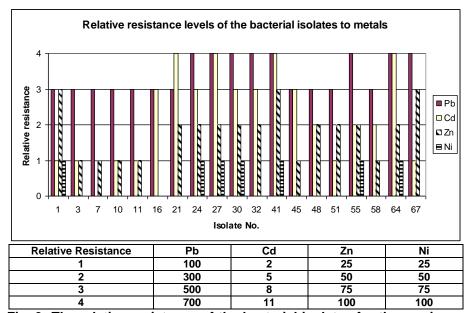


Fig. 3: The relative resistance of the bacterial isolates for the maximum tolerance heavy metal concentrations.

Fig. 4: Growth curve of the most tolerant isolates (B-21, B+41 and B-48) 585

A conclusive identification of the most tolerant isolates B-41 and B-48 was applied

adopting a Sole-Carbon-Source-Utilization Profile analysis using a BIOLOG GP2 MicroPlate™ Gram - positive Identification Test Panel. The obtained results affiliated isolate No. B-48 to *Bacillus amyloliquefacien*s and isolate No. B+41 to *Bacillus thurengensis*. In this context, Rathnayake *et al* (2010) demonstrated a potent heavy metal resistance by Gram-positive sporeforming motile rode-shaped soil bacteria and identified two *Bacillus* strains as *B. thuringiensis* and *Paenibacillus* sp. the most Cd and As-resistant soil microorganism was identified as *Bacillus subtilis* by Ali, *et al* (2011).

REFERENCES

- Ali, N. Dasth, N. Radwan, D. Al-Mailem, M. Eliyas, M. and Radwan, S. 2011. Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ Sci. Pollut. Res.
- http://floodwisdom.mahidol.ac.th/document/Data
- Atlas, R. M. 2000. Handbook of Microbiological Media. CRC Press, Second edition, New York. ISBN: 0-8493-1818-1, 2005 pp.
- Baker, B. J. and Banfield, J. F. 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology 44, 139-152.
- Bisht, S. S; Praveen, B; Rukmini, M; and Dhillon, H. 2012. Isolation and Screening of Heavy Metal Absorbing Bacteria from the Industry Effluent Sites of the River Nagavali. International J. Pharmaceutical Sci. and Research, IJPSR, 3(5): 1448-1451.
- Blidar, C.F., Pop, L. and Petrus-Vancea, A. 2009. Enzymological study of the evolution of the technogenic soil submitted to biological recultivation in Bozanta Mare (Maramures county, north-western Romania, Tom. XVI / 2, : 32-35.
- Casida, L.E., Klein, D.A., and Santoro, T., 1964. Soil dehydrogenase activity. Soil Science 98, 371–376.
- Chien, C., kuo, Y., chen, C., hung, C., Yeh C., and Yeh, W. 2008. Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J. Environmental Sciences 20: 359–363.
- Chihching, C., Yumei, K., Changchieh, C., Chunwei, H., Chihwei, Y. and Chunwei, Y. 2008. Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J. Environmental Sciences 20, 359-363.
- Darwesh, O. M. 2008. Protection of Agricultural Soil near textile industry plants by bioremediation of textile dyes residues. M.Sc. Thesis, Faculty of Agriculture, Cairo University.
- Dell'Amico, E., Mazzocchi, M., Cavalca, L., Allievi, L. and Andreoni, V. 2008. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiological Research 163, 671-683.

- Garc´ıa-Gil J C, Plaza C, Soler-Rovira P. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. J. Soil Biol Biochem, 32: 1907–1913.
- Gee, G.W, and Bauder, J.W. 1986. Particle-size analysis, in: Klute, A. (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Soil Science Society of America, Madison, WI, pp. 383–411.
- Guo, Z., Megharaj, M., Beer, M., Ming, H., Rahman, M. M., Wu, W. and Naidu, R. 2009. Heavy metal impact on bacterial biomass based on DNA analysis and uptake by wild plants in the abandoned copper mine soils. Bioresource Technology 100, 3831-3836.
- Hassen, A., Saidi, N., Cherif, M. and Boudabous, A. 1998. Resistance of environmental bacteria to heavy metals. Bioresource Technology 64: 7-15.
- Hetzer, A., Daughney, C.J. and Morgan, H.W. 2006. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Applied and Environmental Microbiology 72, 4020-4027.
- ISO 11466, 1995 Soil quality, Extraction of Trace Elements Soluble in Aqua Regia. ISO, International Organization for Standardisation.
- ISO 14870, 2001. Soil quality -- Extraction of trace elements by buffered DTPA solution. ISO, International Organization for Standardisation.
- Jjemba, P. K. 2004. Envirnomental Microbiology Principles and Applications. Enfield, NH. Science Publishers.
- Kapoor.k. .k. and Paroda, Sh. 2007. Experimental Soil Microbiology, First Edition. ISBN: 81-239-1430-X.85pp
- Kellya, J. J., Haggblom, M. and Tate, R. L. 1999. Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities. Soil Biology and Biochemistry 31: 1467-1470.
- Krieg, N. R. and Holt, J. G. 1984. Bergey's Manual of Systematic Bacteriology, Vol. 1, eds: Williams and Wilkins. Baltimore
- Kukier U., and Chaney R. L. 2004. In-situ remediation of nickel phytotoxicity for different plant species. J. Plant Nutr. 27, 465–495.
- Lindsay, W. L., and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal 42, 421–428.
- Marzadori, C, Ciavatta, C, Montecchio, D. 1996. Effects of lead pollution on di erent soil enzyme activities J. Biol Fert Soils, 22: 53–58.
- McLean, E.O. 1982. Soil pH and lime requirement, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2, Chemical and Microbial Properties. Soil Science Society of America, Madison, WI, pp. 199–224.

- McNear Jr., D. H., Chaney, R.L. and Sparks, D. L. 2007. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation. Geochimica et Cosmochimica Acta, 71:2190–2208
- Mijangos, I., Albizu, I., Epelde, L., Amezaga, I., Mendarte, S., and Garbisu, C. 2010. Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 91(10), 2066-2074. Elsevier Ltd. Retrieved from . http://www.ncbi.nlm.nih.gov/pubmed/20538406
- Pérez-de-Mora, A., Burgos, P., Madejón, E., Cabrera, F., Jaeckel, P. and Schloter, M. 2006. Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology and Biochemistry 38, 327-341.
- Rathnayake, I. V. N., Megharaj, M., Bolan, N. and Naidu, R. 2010: Tolerance of heavy metals by Gram positive soil bacteria. International Journal of Civil and Environmental Engineering, 2:4, pp: 191-195.
- Renella, G., Mench., M., Gelsomino, A., Landi, L. and Nannipieri, P. 2005. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biology and Biochemistry 37, 1498-1506.
- Sardar, K. Qing, C., Abd El-Latif, H., Yue, X. and Ji-zheng, H. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Env. Sci. 19:834–840.
- Sparks, D. L. 1996. Methods of Soil Analysis. Part 3, Chemical Methods. Soil Science Society of America book series, no. 5, Madison, Wis.
- Tsai, Y.-P., You, S.-J., Pai, T.-Y. And Chen, K.-W. 2005. Effect of cadmium on composition and diversity of bacterial communities in activated sludges. International Biodeterioration and Biodegradation 55: 285-291.
- Valls, M., and V. de Lorenzo, 2002, Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution, FEMS Microbiol. Rev., (26) 327-338.
- Wang, F., Yao, J., Si, Y., Chen, H., Russel, M., Chen, K., Qian, Y., Zaray, G. and Bramanti, E. 2010. Short-time effect of heavy metals upon microbial community activity. Journal of Hazardous Materials 173, 510-516.

عزل وتعريف بكتريا التربة المقاومة للفلزلات الثقيلة وسام محمد عبد'، رضا رجب شاهين'، حسن احمد خاطر' و محمد عبد العليم علي' ا قسم علوم التربة والموارد المائية، كلية الزراعة، جامعة بغداد ٢ قسم علوم الاراضي، كلية الزراعة، جامعة القاهرة ٣ قسم الميكروبيولوجيا الزراعية، كلية الزراعة، جامعة القاهرة

عرضت ثلاث عينات تربة (رسوبية, جيرية وكذلك عينة من مزرعة تروى بمياه الصرف الصحى) والمعاملة بمحلول الببتون المغذي الى تركيزات متزايدة من عناصر الرصاص والكادميوم والزنك والنيكل ثم حضنت لمدة ٧ ايام على درجة ٢٥ درجة مؤية, سِجلت عينة تربة ابو رواش (الصرف الصحي) اعلى رقم للاعداد الكلية للمستعمرات البكتيرية بوحدات (cfug⁻¹) حتى في وجود مستَويات متزايدة مـّنُ الكادميوم والزنك والرصاص تلتها التربة الرسوبية ثم الجيرية (وادي النطرون) تحت تاثير عنصر النيكل , اظهرت التربة الجيرية اعلى كثافة سكانية نظرا لتأثير الجير. في التربة الرسوبية انخفضت الاعداد الى حد كبير (١%) مقارنة مع التربة المضاف لها ٣ مليجرام كادميوم لكُّل كجم تربة بينما انخفضت الي ١٠% في عينة تربة ابو رواش. بالنسبة للترب الملوثة بعنصري الرصاص والزنك سجلت الكثافة الميكروبية في عينة التربة الرسوبية تقريبا نفس الكثافة كما هو الحال في عينة ابو رواش وكانت اعلى مما كانت عليه في عينة التربـة الجيريـة انخفض نشـاط انـزيم الديهيـدروجنيز بنسـب ٣٢% عينـة , ٣٥% و ١٧% فـي عينــات التربــة الرسوبية, ابو رواش والجيرية على التوالي بزيادة تركيز الكادميوم من ٣ الى ٨ ملج/كجم من التربة . زيادة تركيزات الزنك والنيكل ادت الى انخفاض النشاط بنسب اعلى (٣٦-٤٤%) في عينات الرتبة الرسوبية وابو رواش بالمقارنة مع ٢٧-٢٧ لعينة التربة الجيرية . ولوحظ وجود معامل ارتباط موجب معنوي (P<0.05) بين لوغارتم الاعداد الميكروبية وانشاط انزيم الديهيدروجنيز تقريبا في جميع عينات التربة الملوثة في الفلزات الثقيلة. وكانت سبعة وستين من العز لات البكتيرية من التربة الملوثة تم فحصها للتعرف على قدرتها على تحمل زيادة تركيزات الكادميوم ,الزنك,الرصاص والنيكل. واجري فحص العزلات البكتيرية على بيئة الاجار الصلبة المضاف لها تركيزات متزايدة من الفلزات الثقيلة. وقد تم اختيار تسعة عشر عزلة وفقا لمقاومتها لتركيزات الفلزات الثقيلة المضافة الى البيئة. تم الحصول على بعض العزلات القادرة على النمو في وسط يحتوي على ما يصل الى ٧٠٠ ملجم رصاص /كيلو جرام بينما وصل تركيز الزنك ٧٥ ملج زنك /كجم وسجل اقصى مستوى يمكن تحمله من النيكل ٢٥ ملجم/كجم من التربة مع العز لات رقم B+21 ,B-30 ,B+27 ,B-24 ,B-1 ,B-30 ,B+41 ,B-30 ,B+41 B+64 ,B+55 تم فحص الخصائص البيئية, المرفولوجية والفسيولوجية للعز لات المقاومة للفلزات الثقيلة. الاغلبية كانت ايجابية لجرام على شكل قضيب طويل, العزلات متحركة تابعة لجنس باسيلس وقد تم تعيين الحد الادنى للتركيزات المثبطة للنمو لهذه السلالات من الفلزات الثقيلة في بيئات سائلة. لجميع العزلات المدروسة , زادت OD₆₀₀ للبيئة حيث وصلت الحد الاقصى بعد ١٠ يوم , ثم انخفضت بعد ذلك من بين جميع العزلات المدروسة فان البكتريا الموجبة لجرام في العزلات رقم B-48 ورقم B+41 هي الاكثر مقاومة لجميع الفلزات الثقيلة تحت الدراسة وقد تم التعرف على هويات هذه العزلات باستخدام Sole-Carbon حيث كانت العزلة رقم Cource Utilization Profile (Biolog, Inc., Hayward, CA2000). Bacillus thuringiensis B+41 اما العزلة رقم Bacillus amyloliquefaciens B-48

قام بتحكيم البحث

كلية الزراعة – جامعة المنصورة كلية الزراعة – جامعة القاهره أد / احمد عبد القادر طه أد / محمد فايز فواد ابراهيم