The combined effects of NaCl-salinity and elevated CO₂ on the polypeptide levels in leaves of *Aster tripolium* grown under ambient (ca. 370 ppm) and elevated (520 ppm) CO₂ in different concentrations of saline irrigated water were examined by two-dimensional polyacrylamide gel electrophoresis. Silver nitrate stain gels were analyzed to identify changes that resulted when plant grown in the presence of 375 mM NaCl at ambient CO₂ level. The protein patterns for control and salt-stressed seedlings were qualitatively changed. This observation was mainly noticeable in young leaves which was not exposed to salinity stress. It is shown more polypeptide proteins through wide range of pH. In contrary, leaves exposed to salinity stress revealed narrow polypeptide pH range proteins. Also, the control old leaves which was not exposed to salt stress showed limited pH range and lower polypeptide numbers compared to young leaves.

The effect of NaCl on peroxidase activity under 0, 125, 250, 375 and 500 mM NaCl was studied at the ambient CO₂ and elevated CO₂ levels. Peroxidase activity increased under NaCl salinity and the degree of elevation in the activity was salt concentration dependent. Nevertheless, a great activity was recorded in stressed leaves compared to control leaves. Furthermore, peroxidase activity was changed to lower activity in high level of CO₂ corresponding to ambient level of CO₂. The study revealed that *Aster tripolium* showed distinct differences in peroxidase activity behaviour under different environmental condition. The correlation coefficient between peroxidase activity under different salinity stress and high level of CO₂ was strongly negative correlation, which means that plant will not reveal stress response of peroxidase activity under elevated CO₂. Lowering of peroxidase activity under both salinity stress and higher level of CO₂ indicate to the important and unique role of halophyte i.e. *Aster tripolium* in this study for removing, cleaning and remedy environmental air from higher level of CO₂ and decrease the green house effect.

Keywords: *Aster tripolium*, Oxidative and salt stress, Peroxidase, 2-D-Electrophoresis. CO₂ and Green house effect.

Safwatali@hotmail.com
Influence of NaCl salinity on the oxidative stress of growing plants and more specially the ability of the tissues to generate reducing power under stressful environment of salinity remain to be understood. Besides, seedling stage is one of the most critical stages for salt damage during the life cycle of plants. The behaviour and reaction effect of some enzymes and salt stress was studied by Ritambhara et al. (2000). An increase in the peroxidase activity is a common response to oxidative and abiotic stress (Olmos et al., 1997) and (Fieldes and Gerhardt, 1998).

This work was concerned with peroxidase activity in order to understand the role of peroxidase in conferring stress resistance. Also, the present work will undertaken the reflection effect of peroxidase in Aster tripolium grown under different salt concentrations in the environmental condition and in elevated CO₂. Also, proteomic analysis for control and treated samples of Aster tripolium under salt stress comparison to young seedling leaf control was also studied.

MATERIALS AND METHODS

Design and Treatments

This experiment was carried out in 2001 in Justus-Liebig-University Giessen, Institute of Plant Ecology, Giessen, Germany. Plants were irrigated with five different salinity levels, tap water, 125, 250, 375 and 500 mM NaCl, in a quick-check-system in open-top chambers under ambient (ca. 370 ppm) and elevated (520 ppm) CO₂. The effects of the major constraints of salinity on plant enzyme activity of peroxidase and proteomic analysis of young, old control and treated representative leaves with 375 mM NaCl at ambient (ca 370 ppm) CO₂ were studied.

Enzyme extraction and assay (Peroxidase)

Enzyme extraction

One gram of fresh plant leaf tissues in 3 ml of 0.1 M phosphate buffer pH 7 homogenized and grinding with a pre-cooled mortar and pestle. The homogenate was centrifuged at 18000 g at 5 °C for 15 min. The resultant supernatant was stored on ice till the assay is carried out and used as enzyme source within 2-4 h. for assaying peroxidase activity.

Assay of peroxidase activity

Total peroxidase activity in the extracts was assayed as described by Sadasivam and Manickam (1992). In a cuvette put the reaction mixture which consisted of 3 ml buffer phosphate (0.1 M pH 7), 0.05 ml guaiacol solution (0.24 mg/100 ml distilled water), 0.1 ml of crude enzyme extract and 0.03 ml hydrogen peroxide solution (0.14 ml of 30% H₂O₂ make up to 100 ml with distilled water) was added and mixed well to initiate the reaction which was measured spectrophotometrically at 436 nm. The enzyme activity units/liter = 500/(time required in minutes to increase the absorbance by 0.1).

Protein determination
Protein in the extracts were quantified by the method of Bradford (1976) using bovine serum albumin as the standard.

Proteomic analysis.
Protein extraction from *A. tripolium* leaves for 2-D-SDS-electrophoresis

0.1 gram leaves with 0.1 g poly vinyl pyrolidine (PVP) was mortared using pestle in liquid nitrogen to fine powder. Homogenate washed with 1.5 ml solution (1% TCA in acetone) the previous 1.5 ml containing 75 ul dithiotheritol (DTT) added before wash from 1 M DTT. Mixture let to precipitate for 1 h. at -20 °C. After that, samples were centrifuged (12000 rpm) at 4°C for 15 min. Pellet resuspended and rewashed again with 1.5 ml (1%TCA/Acetone) included 75 ul DTT. The previous step made more once till the sample pellet appear white. After that, pellet rehomogenized in 1 ml ice-cold ethanol contain 50 ul DTT (50 mM), DTT added freshly from stock solution. Let samples to precipitate for 45 min. at -20 °C and centrifuge (12000 rpm) for 10 min. at 4°C. Rehomogenized pellet again in 1 ml cold ethanol/DTT, then centrifuge 10 min., 4°C. Pellets were stored overnight at -20 °C. Then, pellet was homogenized in 1.5 ml lysis-buffer. Next, samples were shaken in water bath for 2 hours adjusted at 33°C, then centrifuge for 30 min. at 4°C. The supernatant containing extracted leaves protein used for 2-D SDS-PAGE separation. All centrifuge steps performed at 4°C and 12000 rpm.

Protein Separation
Protein samples were stored at -20 °C. Analytical 2-D PAGE was carried out in proteomic instrumental system. The first-dimensional isoelectric focusing (IEF) was done according to O’Farrel (1975) and Mayer *et al.* (1987) with modification describdes by Ouelhazi *et al.* (1993). The gels contained 3-10 carrier ampholytes and were loaded with 100 ug proteins on 12 cm IEF rod gels (1.5 mm diameter) and rehydrated (20 hour) at 20 °C (15 uA/strip), then gradient up to 3500 volt (8 hours), at the end hold at 3500 volt (14 hour). SDS-PAGE was performed under constant current intensity (15 uA/gel). Molecular weight markers ranging from 14.4 to 90 kDa (Pharmacia) were co-electrophoresed to estimate molecular weight of polypeptide chains. After running, the gel was stained with silver nitrate as described by Heukeshoven and Dernick (1985). Statistical analysis.

Statistical analysis was performed according to Satgraphics Plus ver 7 (1993).

RESULTS AND DISCUSSION

Peroxidase activity at Ambient CO₂

Data illustrated in Fig.1 showed peroxidase activity of *A. tripolium* plants irrigated with different concentrations of saline water and grown under ambient level of CO₂ (370 ppm). Total peroxidase activity of the crude enzyme extracts revealed that enzyme activity was increased starting from control to reach maximum activity at 125 mM NaCl salinity. However, under salinity stress of NaCl the enzyme activity is still high at 250 mM NaCl.
meanwhile the raising NaCl concentration resulted in lowering in peroxidase activity to be close to control level. On the other hand, raising NaCl concentration return peroxidase activity to elevate another again, but not much. These results mean that peroxidase activity was a salt-dependent responsive enzyme. Also, showed that peroxidase activity was the best reflected parameter to salinity degree.

Fig.1. Peroxidase activity in Aster tripolium irrigated with different concentrations of saline water (mM NaCl) under ambient level of carbon dioxide (370 ppm).

Peroxidase activity at Elevated CO₂
Data illustrated in Fig.2 showed peroxidase activity of A.tripolium plants irrigated with different concentrations of saline water and grown under elevated level of CO₂ (520 ppm). Data revealed that peroxidase activity showed maximum value at 375 mM NaCl salinity. Meanwhile, lower peroxidase activity values were shown at 125, 250 and 500 mM NaCl salinity. Alteration of peroxidase activity under this conditions revealed two things: Firstly, peroxidase activity was responsible parameter to salinity degree as previously found in ambient CO₂ level. Secondly, the lowering in peroxidase activity reflect the ability of A.tripolium to utilize and consume the environmental CO₂ without increasing its activity, which mean that plant was not under salinity stress. On another word, plant in salinity stress with high level of CO₂ could adapted to this stress and still grow without raising its activity. Which pointed to suitability and ability of this plant to grow in environment polluted with higher level of CO₂. In addition that plant could have a defense mechanism to protect itself from enhanced production of oxygen free radicals which responsible for peroxidation of membrane lipids and the degree of peroxidative damage of cells was controlled by the potency of antioxidative peroxidase enzyme system.
These results are in harmony with Siegel, (1993) and Sancho et al. (1996) who reported that total peroxidase activity was increased in response to salinity. Also, Sancho et al. (1996) stated that the increase of total peroxidase activity in the medium of the salt adapted cells reflect the changed mechanical properties of the cell wall, which in turn could be related to the salt adaptation process since cell wall properties are known to be modified by salt stress and earlier reports (Bradly et al., 1992; Chen et al., 1993) Link total peroxidase activity to change in cell wall and cell membrane integrity properties under salt stress. Also, these results are in accordance with Sreenivasulu et al. (1999) who reported that exposure to salinity resulted in changes in the induction of total peroxidase activity and its isozymes and such alterations in the induction and its isoform patterns vary between cultivars. Nevertheless, they also added that relatively tolerant nature of cultivar could be due to induction of specific peroxidase isozyme and the cultivars differed in their ability to respond to salinity by triggering these peroxidase gene expression. Moreover, according to Eshdat et al. (1997) peroxidases are a family of multiple isozymes that catalyze the reduction of H₂O₂, and thus help to protect the cells against oxidative damage. This result can supply information on the possible involvement of activated oxygen species in the mechanism of damage by NaCl stress, and also could allow deeper insight into the molecular mechanisms of salt tolerance to salt induced oxidative stress. To better understand the changes caused by salt stress.

Peroxidase activity Behaviour under ambient and elevated CO₂

Data depicted in Fig. 3 revealed the inversion behaviour of peroxidase enzyme under ambient and elevated CO₂. It has been pointed out that peroxidase behave stress behaviour under ambient condition during oxidative stress from salinity. Meanwhile, it behaves completely opposite behaviour
under elevated CO$_2$ during oxidative stress of salinity. This opposite behaviour mean that elevated CO$_2$ reduce oxidative stress for this plant under salinity stress. This remarkable note could be confirmed from its activity which increased at high level of NaCl 375 mM, which mean at this point the plant begin to give its response for oxidative stress. This opposite trend for Aster under this condition should be taken with more consideration. This results are in harmony with Heath and Packer (1968) they reported that peroxidase isozymes play a key role in salt tolerance. Also, Sreenivasulu et al. (1999) stated that the degree of increase peroxidase activity was found to be dependent on severity and duration of stress.

![Graph showing the behaviour of peroxidase enzyme activity in Aster tripolium under ambient and elevated CO$_2$.](image)

Fig.3. Behaviour of Peroxidase Enzyme Activity in Aster tripolium under Ambient and Elevated CO$_2$. (370 & 520 ppm) irrigated with different levels of saline water.

Proteomic analysis

Proteomic analysis for young leaf of *A.tripolium* compared to old and treated plant under 375 mM NaCl salinity stress at ambient CO$_2$ was depicted in Figs. 4,5,6. The analysis were limited to the polypeptide changes that were easily visible. Proteomic analysis revealed that polypeptide chains of young leaf were numerous and dispersed in wide range of pH with different molecular weight ranged from 94 to lower 14.4 as shown in Fig. 4. This mean that plant did not suffer from any kind of stress and was in a normal condition. Further, from 2-D-electrophoresis it was not accumulated in limited zone. Stained gels (Figs.4-6) revealed that the polypeptide patterns were strikingly similar between control old leaf and salinity samples. Treatment by 375 mM NaCl results in an increase in the net synthesis of some proteins and a decrease in the synthesis of others as shown from arrow in Fig (4,5 & 6). Also, it is obviously shown a new peptide in stressed samples and a decrease in the pattern number in stressed sample comparison to non stressed. In addition a concomitant induction of unique "stress proteins" was observed in stressed sample (Fig.6). The most striking change in leaf protein of salt-
grown plants is a significant increase in the net synthesis of polypeptide with pl approximately 5. The decrease in polypeptide was noticeable in both control old and stressed plant leaves. New polypeptide is considered to be a salt-tolerant plant against salinity stress. The increase in the polypeptide during salt stress could be important in the adaptation of the plant to the saline conditions. This results are in harmony with Majoul et al. (2000). Furthermore, Baiar and Dietz (1996) stated that peroxiredoxins are a new group of peroxide scavenging enzymes sharing no homology with any other isoperoxidase known so far.

Regarding to Figs. 4 and 5 it was found that, proteomic analysis for old and stressed leaf of A. Tripolium was accumulated in both narrow zone and range of pH mainly acidic range between 4 and 7 this range was reduced to 4-5 in stressed plant. This result means that, firstly, plant synthesis protein was differed according to the type of stressed, old leaf is suffering from senses stress and the other leaf suffer from salinity stress. Secondly, the type of synthesis protein under salinity stress was differed, it tend to be acidic in its isoelectric point. This finding are in agreement with Ali and Eisa (2001) they found that under salinity stress the plant tend to decrease the pH to acidic pH. Furthermore, Heath and Packer (1999) reported that peroxidase is an important defence system of plants against oxygen free radicals. Nevertheless, but the degree of elevation in peroxidase activity was to be dependent on severity and duration stress. Not only that, but they also found a greater activity of acidic peroxidases in 5-day old seedling of tolerant variety under NaCl stress could be related to the salt adaptation of this variety.

Fig.4. Patterns of silver nitrate stained proteins extracted from leaves of A. tripolium control young leaves without salinity stress under ambient level of CO2
Fig. 5. Patterns of silver nitrate stained proteins extracted from leaves of *A. tripolium* and old leaves without salinity stress under ambient level of CO$_2$

Fig. 6. Patterns of silver nitrate stained proteins extracted from leaves of *A. tripolium* leaves with salinity stress (375 mM NaCl) under ambient level of CO$_2$
In addition, acidic peroxidases might be involved in cell membrane integrity, regulation of early seedling growth under salt stress conditions as demonstrated in some plant species (Gaspar et al., 1991). This finding was confirmed in the present work, on other word acidic peroxidase this enzyme give the optimum activity at acidic pH which confirm the current finding in the present study.

Conclusion

The effect of salt stress on the pattern of protein synthesis in leaves of *Aster tripolium* by 2-D-PAGE was used to identify polypeptides whose synthesis was altered or new expressed. The present study showed high total peroxidase activity at ambient level of CO$_2$ and opposite trend like the mirror image of peroxidase activity was shown in elevated level of CO$_2$ in *Aster tripolium* grown under different levels of saline conditions. The study revealed that *A. tripolium* showed distinct differences in peroxidase activity behaviour under different environmental condition. The results show that *A. tripolium* is a promising cash crop halophyte. Halophyte allows the use of saline irrigation water and the reclamation of saline soils, and its sustainable use can help feeding the growing world population. Additionally, not only Aster will clearly benefit from rising CO$_2$-concentrations in future, but also it can counter global climate change by sequestering CO$_2$.

Acknowledgement

The author express their gratitude to Prof.Dr. Edwin Pahlich Professor of Biochemistry and Prof.Dr. Hans-Werner Koyro Professor of Plant Ecology, Institute of Plant Ecology, Justus-Liebig-University Giessen, Germany, for their help and introducing all facilities to accomplish this study during the visiting author in 2001.

REFERENCES

Ritambhara G.; Kumar, Kavita Shah and R. S. Dubey (2000). Salinity induced behavioural changes in malate dehydrogenase and glutamate
dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci.156, 23-34.

In this study, the effects of NaCl concentration on the activities of dehydrogenase were investigated in rice seedlings of differing salt tolerance. The results showed that dehydrogenase activities increased with increasing NaCl concentration. This suggested that dehydrogenase may play a role in the adaptation of rice seedlings to salt stress. Further studies are needed to clarify the mechanisms involved in the regulation of dehydrogenase activities under salt stress conditions.

References:
للنبات عند المستوى العالي من كلوريد الصوديوم حيث أن تعرضه للمستوى العالي من الملوحة قد يسبب مقاومة أولية ضد التأثيرات الملحية المتزايدة. كما أن انكساس النشاط الإزيمي تحت تأثير المستوى المرتفع من ثاني أكسيد الكربون يمكن تفسير ذلك بأن النبات تحت ظروف الإجهاد التأكسدي الملحية يقوم بتقليل التأكسد ولكن النتيجة، ووجد مستوى مرتفع من ثاني أكسيد الكربون يستطع النبات تحت تلك الظروف أن تزيد كمية ثاني أكسيد الكربون في وُجُه السماحة مما يمكنه من القيام بعمليات البناء والأهداف تحت تلك الظروف.

بالرغم من الفعل الحمضي للتغير حيث بدأ النشاط في الارتفاع تحت تأثير الملوحة المتزايدة.

وتحل التنازل أنه يمكن للنبات أن يتحمل ظروف الإجهاد الملحية في الجو العادي حتى 250 مليومول، بينما في المستوى العالي من ثاني أكسيد الكربون يمكنه التحمل حتى 375 مليومول حيث بدأ النشاط الإزيمي في التأثر عند هذا المستوى بالإجهاد التأكسدي الملحية. ويلاحظ أن تأثير البيراكسيدز عند تركيز 125 مليمول في الجو العادي وعند ظروف تأثيراً أجهداً في الجو الثاني نسيج 375 مليومول وبدافعة التأثير عند 375 مليومول في الجو الثاني، سبعب أن النبات للأعلى إجهاداً تأكسدياً ملحاً بدليل عدم تأثير البيراكسيدز. وكان ذلك تم اختبار تركيز 375 مليومول حيث أنه يمثل نقطة التحول أو الألقاء، وأجري تحليل بروتيني في اتجاهين لينة كلترول حديثة وكتروول بعد شهر من تعرض النبات للإجهاد التأكسدي وعينة معاملة 350 مليومول كلوريد الصوديوم عند المستوى الجوي العادي من CO\textsubscript{2}، أظهر التنازل أن العينة الحديثة تحتوي على عدد كبير من الأسلاب البيئية والتي، تظهر اثناءه في درجات مختلفة من pH عامةً لا تظهر تأثيراً أجهداً في البحوث الدقيقة، وبدافعة التأثير عند درجات حاسمة في نسبتها النتائج التي تظهر في العينة المعرضة للإجهاد الملحية التأكسدي مع حدوث اختفاء العديد من الأسلاب البيئية في العينة المعمولة.

وتغري الدراية إلى الدور الذي يمكن أن تلعب النباتات الملحية، يمكن أن تتسبب النباتات الملحية في مجموعة من الأضرار الملحية والاستجابة من تلك النباتات مثلاً أو تأكسدات لها أهمية إعلامية، كما أظهرت دراسة الدورة البيئية الذي يمكن أن يقوم به تلك النباتات في اختصاص ثاني أكسيد الكربون الجوي تحت تلك الظروف الإجهادية. وم знать تأثير النشاط الإزيمي لها (البيراكسيدز) في تلك الدراسة حيث أنه من الإثباتات الذي تتأثر بوجود في الإجهاد التأكسدي، مما يعني الدور الذي يمكن أن تساهم فيه في نقص ظاهرة الإبعاد الحراري أو مسالطات على الـ .

green house effect