RELATIVE EFFICIENCY OF FE-OXIDE STRIP FOR EXTRACTING PHOSPHORUS IN SOME EGYPTIAN SOILS EI-Gendi, S.A., A. Sh. A. Osman, S.M.M. Allam and M.E. Abdallah Soil, Water and Environ. Res. Inst., Agric. Res. Center, Giza, Egypt.

ABSTRACT

Three methods for extracting available phosphorous in some Egyptian soils, has been compared with Fe-strip method which proposed by Tzy-Huei Lin et al. (1991). Moreover, to provide a base of comparison, a biological treatment was also established.

The results showed that the highest total-P value was recorded for clay soils (1943 mg kg⁻¹), followed by calcareous soil (848.55 mg kg⁻¹) and sandy soils (627.4 mg kg⁻¹). Amongst the tested soil properties, the statistical analysis revealed that only clay content (r= 0.696⁻¹) and calcium carbonate content (r = -0.601*) were significantly correlated with the total-P.

The data showed that the extracted P percent (from its total) by the tested extractants may be ranked as follows; Soltanpour and Schwab (5.56%) > Fe-strip (1.3%). While Bray1 and Olsen and Sommers methods released minor portion of P. the high P portion extracted by Soltanpour and Schwab may be due to 1) a particular affinity between DTPA and P, 2) this extractant may released various pools of P beside the available portion into solution and 3) the effect of high ionic strength (1M) of NH₄HCO₃.

The data also showed that the percent of P released from calcareous soils > sandy soils > clay soils. This may be attributed to the employed methods that may destroy a number of P-minerals in calcareous soils, consequently the recovery % of P increased. While the minor percent of P released from clay soil may be attributed to its highly adsorptive power in that soil. The statistical results showed that Fe-strip was significantly correlated with the widely used soil extractants (r= 0.451*).

The results of biological evaluation of the tested methods indicated that only Fe-strip (M_4) ad Olsen and Sommer method (M_3) were significantly correlated with the amount of P-uptake by plants. The regression equations for this relation were:

Y = 12.29 + 0.94 X $R^2 = 19.9$ Y = 15.30 + 4.86 X $R^2 = 19.6$, respectively.

These results concluded that Fe-strip method was satisfactory and gave reliable information about available P for plat.

INTRODUCTION

Because of the vital role of phosphorous in plant nutrition and the variable reactions which take place when it is incorporated into the soil, it is of great interest to know the solis's content of that element. However, in many cases the total content is of little biological or ecological interest (Alvo, 1993; Saker, 1995 and Jones, 1998).

Several extracting solutions (e.g., Olsen, 0.5 M NaHCO₃, pH 8.5; Bray I, 0.025 M HCI + 0.03 M NH₄F; Bray II, 0.03 M NH₄F + 0.1 M HCl; Mehlich III, 0.5M HCI +0.0125 M H₂SO₄; and Kelowna, 0.25 N HOAC + 0.015 N NH₄F) were used to extract the available-P pool. These extractants react with the soils through one or more of the following mechanism; chelating,

hydrolysis, complexing, and solubility. On other side, it is impossible to find an extraction that releases a definite pool of a concern metal. Furthermore, it needless to say that is impossible to find an extractant that releases in most types of soils a definite fraction of an element.

Fe-Oxide impregnated filter paper strips, is a new technique proposed by Tzu-Huei Lin et al. (1991) for determination the availability of P. they stated that this method simulates the mechanism of P released from solid phase to rhizosphere and gave reliable prediction about the availability of P in soil. Moreover, Maguire et al. (2000) reported that Fe-strip method was useful for measuring the initial potential for soils to release P.

MATERIALS AND METHODS

Twenty surface (0-20 cm) soil samples varied in some of their properties were selected from some locations in Egypt. These samples were air dried, crushed, sieved and analyzed for general identification as outlined by Black (1965) and Page (1982). The range and mean values of their chemical and physical properties are listed in Table 1.

Table 1. Range and mean values of some physical and chemical properties of the tested soils.

properties of the tested soils.				
Soil property	Range	Mean		
PH (1: 2.5 soil water suspension)	7.2 - 8.3	7.84		
EC (dS/m in soil paste extract)	1.0 – 16.8	5.75		
Organic carbon %	1.02 - 3.35	1.93		
Total calcium carbonate %	0.40 - 36.80	9.24		
Clay %	0.12 - 76.32	13.07		
Total P (mg/kg): Sandy soil	356 - 898	529.4		
Calcareous soil	514.2 - 957	848.55		
Clay soil	1267.4 – 2118.23	1943.0		

The tested procedures for extracting-P

Four soil procedures were compared to extracting the available portion of P:

- 1) Ammonium bicarbonate + DTPA, (1 M NH₄HCO₃ + 0.005 M DTPA, pH 7.6), as described by Soltanpour and Schwab, 1977 denoted as M₁.
- 2) Bary1, (0.03 NH₄F + 0.025 N HCl), Bray and Kurtz, 1945 denoted as M₂.
- 3) Distilled water, as outlined by Olsen and Sommers, 1982, denoted as M3 and
- 4) Fe-Oxide strips, as described by Tzu-Huei Lin et al., 1991 denoted as M₄. This technique based on immersing filter paper in 0.4M FeCl₃ solutions and in 2.7 M NH₄OH solution, respectively to convert FeCl₃ into the oxide form, washed, dried and stripped into 2x10 cm.

Extraction of soil-P by paper strip method:

The tested soil was equilibrated with 0.01 M CaCl₂ in (1:40) soil-solution ratio. Four paper strips were attached to the cap of the shaken bottle. The bottle was shaken for 16 h at room temperature. Afterwards, the strips were removed, washed in distilled water. To extract available P, the strip was

J. Agric. Sci. Mansoura Univ., 30 (2), February, 2005

shacked with 40 ml of 0.2 M H₂SO₄ for one hour in a polyethylene bottle. The concentration of P in the solution was determined calorimetrically using ascorbic acid method according to Hergert (1970).

Biological evaluation:

To evaluate the effectiveness of the tested extractants for determination availability of phosphorous, a plant reference (Barley, *Hordeum vulgare L*) was pot planted in the tested soils. At the end of growth period, (60 days), the plants were cut, dried, weighted and grounded. A 0.2 gm of each plant material was wet digested according to Chapman and Pratt (1961) and P uptake was calculated as mg/ plant. The obtained data were statistically analyzed according to Barbara and Brain (1994).

RESULTS AND DISCUSSION

Values of total P in the tested soils were listed in Table 2. The data revealed that the highest total-P values were recorded for alluvial soils followed by calcareous and sandy soils. The range of total-P in mg kg⁻¹ (1267.4 to 2118.23); (514.2 to 957) and (356 to 898.2) in alluvial, calcareous and sandy soils, respectively. These data were almost within the ranges reported by Balba (1981) for some soils of Egypt.

Table 2. The P concentration (in ppm) extracted by the various tested methods and total P content.

methods and total P content.					
Sample No.	M ₁	M ₂	M ₃	M ₄	Total P (mg kg ⁻¹)
1	11.69	3.47	1.50	10.43	1654.60
2	27.23	8.97	2.51	14.69	1614.20
_3	13.52	6.52	1.61	10.24	1437.80
4	11.67	3.64	2.28	14.03	1435.00
5	46.59	1.28	1.02	8.69	418.00
6	9.91	3.37	1.43	8.92	1769.20
7	12.68	1.69	1.21	9.04	681.60
8	23.17	1.97	0.95	8.95	1416.00
9	9.91	5.27	2.28	13.77	954.00
10	34.34	8.13	1.70	10.25	1620.00
11	1.90	2.15	0.95	10.46	1712.00
12	26.36	2.42	1.61	10.74	1519.00
13	11.14	3.37	0.95	9.40	1610.00
14	25.58	3.00	1.06	9.49	1518.00
15	19.01	2.08	0.95	7.58	534.00
16	61.97	2.20	0.95	9.24	598.20
17	64.07	5.43	1.94	11.35	651.00
18	56.17	1.14	1.06	10.56	643.00
19	37.40	5.56	1.51	9.43	496.00
20	74.90	2.41	1.93	10.45	514.00
Χ	28.96	3.70	1.47	10.39	1139.65

The effect of the tested soil properties on total-P contents was statistically illustrated in Table 3. It was obviously cleared from the table that only clay content and calcium carbonate were contributed significantly with total-P. The statistical analysis showed highly positive relation between clay and total-P (r = 0.696°), while calcium carbonate was correlated negatively (r=-0.601). Similar observations were also reported by Hela! (1993).

Table 3. Simple correlation coefficient between the tested methodology

for P and some of soil properties.

Soil property	M ₁	M ₂	M ₃	M ₄	Total P (mg kg ⁻¹)
EC	0.189	-0.321	-0.344	-0.120	-0.241
PH	0.416	-0.311	-0.111	0.238	-0.251
Clay	-0.567*	0.104	0.034	-0.038	0.696**
CaCO3	0.606*	-0.267	-0.229	0.173	-0.601*
O.M.	-0.244	0.165	0.388	0.175	0.305

The recovery of P calculated as percentage of its total by the tested extractants was illustrated in Fig.1. The data in Fig.1 showed that more than 5.56% (on average) was extracted with Soltanpour and Schwab method, like wise 1.32% was extracted by Fe-Strip method. Also, relatively small portions of P were extracted either with Bary and Kurts or Olsen and Sommers method. The recovery was 0.19 and 0.42% of P_t, respectively.

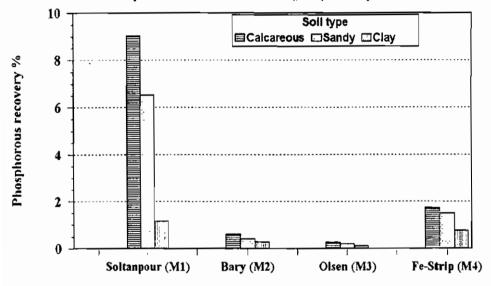


Fig. (1). Relation between the tested extractant and phosphorous recovery percent.

The efficiency of DTPA-NH₄HCO₃ solution (Soltanpour and Schwab, 1977) for extracting P may be due to a particular affinity between DTPA and P but may also be caused by the fact that this extraxtant apparently brought

much of organic P into solution, as well as, the effect of high ionic strength of NH₄HCO₃, 1M.

The influence of the soil type on P extractability was also illustrated in Fig.1. The results revealed that the values of P extracted with Soltanpour and Schwab solution were; 9.01, 6.51 and 1.16% of total-P in calcareous, sandy and clay soils, respectively. The corresponding values for Fe-Strip were; 1.72, 1.49 and 0.74%, respectively. The high portion of P released from calcareous soil compared with the others, probably due that the employed extractants might destroy P-bearing minerals in calcareous soil, consequently, transfer a number of components from the crystal structure of less resistant mineral into solution.

On the other side, the minor portions of P released from clay soil may be attributed to its high adsorptive power. This finding may be confirmed with the negative correlation obtained between P extracted in M_1 extractant and clay content values (r=-0.567), Table 3.

One of the goals of the research was to quantify the relationships between the included methods for testing availability of phosphorous. The data presented in Table 4 showed that M_4 method (Fe-strip) was significantly correlated with the widely used procedure M_1 (Soltanpour and Schwab). Furthermore, Fe-strip method was ease in use, don't causing losing in sample weight during shaking as well as it simulates the mechanism of P released from solid phase into solution.

Table 4. The correlation coefficients between the tested procedures and P-uptake

Extractant	M ₁	M ₂	M ₃	M ₄
M ₂	-0.088			
M ₃	0.035	0.680		
M ₄	0.451	0.262	0.276	
Total-P	-0.580	0.379	0.161	0.074

Biological evaluation of the tested methods

The relation between the tested methods for extracting P and uptake-P by the reference plant (barely) was demonstrated in Fig. 2 (a-d). The data presented in the figure indicated that Olsen & Sommers (M_3) and Fe-Strip (M_4) were the only methods correlated significantly with the P-uptake by barely plants. Also, the regression equations obtained between P-uptake by barely and amounts of extractable-P by Olsen & Sommers and Fe-Strip were Y= 15.3+ 4.86X $R^2 = 19.6\%$

$$Y = 12.59 + 0.94X$$
 $R^2 = 19.9\%$, respectively.

From the above results, it appears that the widely used soil method, (Soltanpour and Schwab, 1977) did not extract available P very precisely but it extracted many pools of P beside the available portion and could err greatly in predicting the uptake of P by plants. Meanwhile, Fe-strip method was satisfactory and gave reliable prediction for available P.

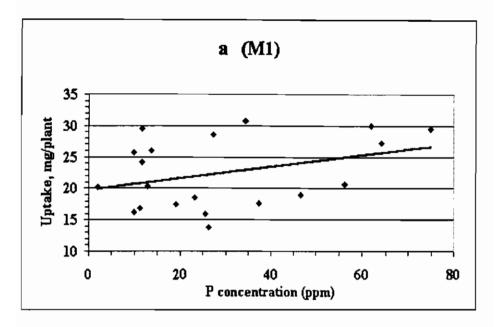


Fig. (2a). Relation between extracting phosphorous and P-uptake by barely plant.

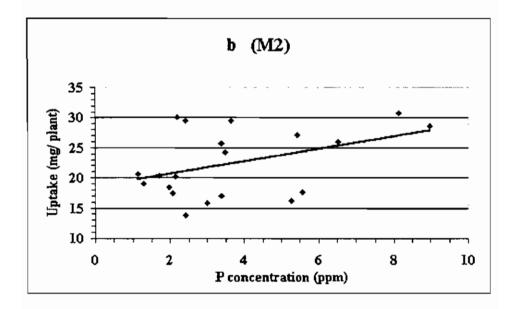


Fig. (2b). Relation between extracting phosphorous and P-uptake by barely plant.

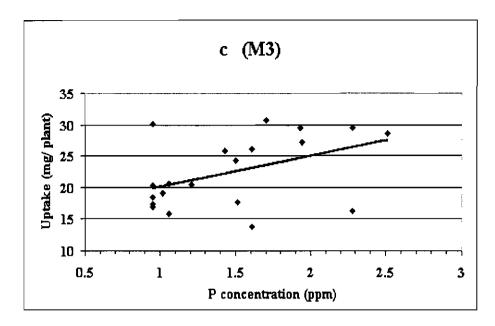


Fig. (2c). Relation between extracting phosphorous and P-uptake by barely plant.

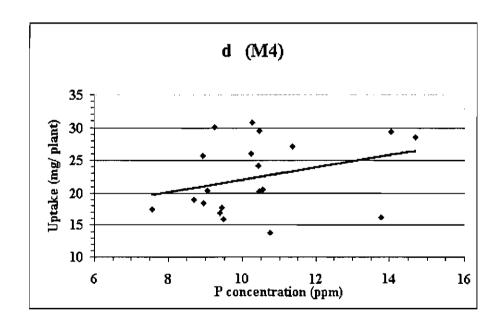


Fig. (2d). Relation between extracting phosphorous and P-uptake by barely plant.

REFERENCES

- Alvo, A.K. (1993). Comparison of Mehlich3, Mehlich, ammonium bicarbonate-DTPA, 1.0 ammonium acetate and 0.2 ammonium chloride for extraction of calcium, magnesium, phosphorus and potassium for a wide range of soil, common. Soil Sci. plant, Anal. 24: 603-612.
- Balba, A.M. (1981). Fifty years of phosphorous studies in Egypt. Advance in Soil and Water Res. No. 5.
- Barbara, F.R. and L.J. Brain (1994). Minitab Handbook. Duxbury press. An Imprint of Wad Sworth Publish. Comp. Belonont California, USA.
- Bary, R.H. and L.T. Kurtz (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59: 39-45.
- Black, C.A. (1965). Methods of soil analysis. Parts II. Amer. Soc. Agron. Inc. Publ and Medison, Wisc., USA.
- Chapman, H.D. and P.E. Pratt (1961). Methods of analysis for soils, plant and waters. Univ. of Calif, Div., of Agric. Sci.
- Helal, M.I.D. (1993). Phosphorous availability index in cultivated soils of Egypt: Solution and buffering concepts. J. Agric. Sci. Mansoura Univ. 18 (10): 3131-3139.
- Jones, J.B. (1998). Soil test methods: past present and future use of soil extraction. Commun. Soil Sci. Plant Anal. 29: 1543-1552.
- Maguire, O.R.; T.J. Sims and J.F. Coale (2000). Phosphorous fractionation in biosolids-amended soils: Relationship to soluble and desorbable phosphorous. Soil Sci. Soc. Am. J. 64: 2018-2024.
- Oisen, S.R. and L.E. Sommers (1982). Phosphorous. In A.L. Page et al. (ed). Methods of soil analysis part 2. 2nd ed. Agron. 9: 403-430. Sakr, A.A.; H.H. El-Mashady and M.A. Sherif (1995). Evaluation of several
- Sakr, A.A.; H.H. El-Mashady and M.A. Sherif (1995). Evaluation of several soil tests to predict P-availability in some soils of Egypt. J. Appl. Sci. 10: 78-91.
- Soltanpour, P.N. and A.P. Schwab (1977). A new soil test for simultaneous extraction of macro-and micronutrients in alkaline soils. Commune. Soil Sci. Plant Ana. 8: 195-207.
- Tzy-Huei Lin; Sheng-Bin Ho and Kun-Huang Houng (1991). The use of iron oxide-impregnated filter paper for extracting of available phosphorous from Taiwan soils. Plant and Soil 133: 219-226.

الكفاءة النسبية لاستخلاص الفوسفور الميسر باستخدام طريقة أشرطة ورق الترشيح المشبع بأكاسيد الحديد من بعض الأراضى المصرية سمير عبدالظاهر الجندى، على شحاتة على عثمان، سيد محمد محمود علام ومحمد السبد عبدالله

معهد بحوث الأراضي والمياه والبيئة- مركز البحوث الزراعية- شارع الجامعة- الجيزة- مصر

يهدف هذا البحث الى مقارنة ثلاثة طرق تستخدم فى استخلاص الفوسفور الميسر فى بعض الأراضى المصرية وبين طريقة أشرطة ورق الترشيح المشبع بأكاسيد الحديد والتى اقترحت سنة ١٩٩١ بمعرفة Tzy-Huei Lin et al . وحتى يكون هناك مستوى للمقارنة تم زراعة نبات الشعير لتتبع كمية الفوسفور الممتص.

أوضحت النتائج أن الفوسفور الكلي كان أعلى ما يمكن في الأراضي الطينيـــة (١٩٤٣ ملليجر ام/كجم) يلبها الأراضى الجيرية (٨٤٨,٥٥ ملليجر ام/كجم) ثم الأراضى الرملية (٦٢٧,٤ ملليجر ام/كجم). كذلك أوضحت النتائج أن من بين خصائص التربة المدروسة كان كل من محتوى الأرض من الطين (``r=0.696) وكذلك المحتوى الكلي من كربونات الكالســيوم (`r=-0.601) ترتبطان معنويا مع محتوى الكلى للفوسفور في الأراضي. ويمكن ترتيب النسبة المئوية للفوسـفور المستخلص بواسطة الطرق المدروسة (كنسبة من الكمية الكلية) كما يلــــى Soltanpour and .(1.30%) > Fe-strip (1.30%) ابينما كانت الكمية المستخلصة بواسطة Bray 1 أو بواسطة Olsen and Sommers ضئيلة جدا. وقد ترجع إزدياد النسبة المستخلصة مــن الفوسفور بواسطة طريقة Soltanpour and Schwab الى ١) وجود نوع من الأرتباط بسين DTPA وبين الفوسفور، ٢) هذا المستخلص يمكن له أن يستخلص صور متعددة مــن الفوســفور بخلاف الصورة الميسرة ٣) قد يرجع ذلك الى زيادة القوة الأيونية للمستخلص (١ مــولر) مــن NH4HCO3 . أوضعت النتائج كذلك أن النسبة المستخلصة من الفوسفور (بالنسبة للمحتوى الكلي) كانت أعلى في الأراضي الجيرية بالمقارنة بالأراضي الرملية ثم الأراضي الطينيــة علـــي الترتيب. وقد يرجع ذلك الى أن المستخلصات المدروسة قد تؤدى الى هدم العديـــد مـــن المعــــادن الحاملة للفوسفور في الأراضي الجيرية مما يؤدي الى إنفراد الفوسفور في المحلــول. أمـــا فــــي الأراضى الطينية فيرجع صغر النسبة المستخلصة من الفوسفور الى القوة الادمصاصية العالية لتلك الأراضى. وقد أوضحت نتائج التحليل الاحصائي أن طريقة استخلاص الفوسفور بواسطة شـــرائط ورق الترشيح المبلل بأكاسيد الحديد (M₄) كانت مرتبطة معنويا مع طريقة Soltanpour and Schwab والمستخدمة على نطاق كبير (*r=0.451) كمستخلص للعناصر الميسرة في التربة.

وقد أوضحت نتائج التقييم البيولوجى أن طريقتى M₄ وكذلك M₃ كانتا أكثر الطرق المدروسة ارتباطا بالكمية الممتصة من الفوسفور بواسطة نبات الشعير وكانت معادلات الانحدار كالأتى:

Y = 12.59 + 0.94X (R² = 19.9%) Y = 15.3 + 4.86X (R² = 19.6%)

على الترتيب. وبالتالى تدل هذه النتائج على أن الفوسُفور المستخلصُ بواسطة شرائط ورق الترشيح المبلل بأكاسيد الحديد (Ma) تعطى نتائج معقولة ومنطقية عن الفوسفور الميسر للنبات.