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ABSTRACT

Geostatistics provides descriptive tools to characterize the spatial
distribution of soil attributes. Kriging techniques rely on the spatial
dependence between observations to predict attribute values at un-sampled
locations. Cokriging on the other hand, utilizes the spatial correlation between
two variables to map the primary one, which is under-sampled, using
information content of the secondary variable. Collocated cokriging is used
when the primary and the secondary variables are sampled at the same
location. The present study aimed at applying collocated cokriging to map
topsoil sodicity (primary variable) measured in 28 samples, using the
information content of topsoil salinity (secondary variable) measured in 134
samples. Topsoil sodicity (SAR) ranged between 3.65 and 28.85, whereas
topsoil salinity (EC) varied from 0.36 to 12.24 dS/m. The -correlation
coefficient, r, between the two variables is 0.98, which satisfies the most
important criteria for carrying out cokriging. The fitted semivariograms for both
variables are Gaussian, and the cross-semivariogram between the two
variables is also Gaussian. The cokriged spatial distribution of topsoil sodicity
was mapped and compared to kriged SAR. The cokriging results were cross-
validated and the standard error of estimation was matched to that of kriging.
The study showed the superiority of cokriging upon kriging as a spatial
mapping method, especially if the primary variable is under-sampled.
Keywords: Geostatistical analysis, Collocated cokriging, Kriging, Salinity,

Sodicity, Cross-semivariogram, Semivariogram,

INTRODUCTION

Geostatistics has been applied by many researchers to describe the
spatial variability using the semivariogram and predict the values of soll
attributes at un-sampled locations by different kriging (named after D.J. Krige)
techniques (Trangmar et al., 1985; Warrick et al., 1986; Webster and Oliver,
1989; Burrough, 1989; Webster, 1991; Goovaerts, 1992, 1998b and 1999;
Bahnassy et at. 1995; Bahnassy and Morsy, 1996 and El-Zahaby et al. 1999),
ecological properties (Banerjee and Gelfand, 2002), and categorical variables
(Bogaert, 2002). The term cokriging is used for spatial linear regression that
uses data defined by different attributes. The data set will contain the primary
variable of interest in addition to one or more secondary variables, which are
spatially cross-correlated with the primary variable. Thus, the dataset will
contain useful information about the primary variable. The cross-correlation
between variables is utilized to improve these estimates, and to reduce the
variance of the estimation error. The usefulness of the secondary variable is
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often enhanced by the fact that the primary variable of interest is under-
sampled (Issacks and Srivastava, 1989). The spatial relationship between the
values of the attribute is governed by the regionalized variable theory, which
states that observations close to each other are more correlated than
observations taken at a further distance (Journel and Huijbregts, 1978). This
means that points spatially close to the estimation points should be given
higher weights than those further away (Cressie, 1993). The coregionalized
variable theory deals with the same situation as the regionalized variable
theory, but the variables under consideration are correlated, and behave the
same (McBratney and Webster, 1983 and 1986). Consequently, the cross-
semivariogram can be modeled as a joint function between the two variables
(Issacks and Srivastava, 1989). The linear coregionalization model allows for
different ranges of spatial correlations for each variable (Wackernagel, 1994
and 1995). Due to computation and notation difficulties related to cokriging
system (Journel and Huijbregts, 1978; Myers, 1982; and Deutsch and
Journel, 1998), a limited number of researches have been carried out utilizing
cokriging as a best linear unbiased estimator (B.L.U.E.). Danielsson et al,
(1998) applied cokriging to estimate the total amounts and the spatial
distribution for organic carbon, nitrogen and phosphorus in the Gulf of Riga
surficial sediments, using loss on ignition as a covariable. Goovaerts (1998)
used different methods of kriging and cokriging to model the spatial
distribution of pH and electrical conductivity in two transects in forest and
pasture soils. Ishida and Ando (1999) utilized disjunctive cokriging to estimate
soil organic matter from Landsat Thematic Mapper image. Rivoirard (2001)
indicated that the cokriging could be collocated or multi-collocated depending
on the configuration of data and the location at which the value will be
estimated.

The purpose of this study is to apply cokriging to predict the values of
the primary variable (topsoil sodicity), which is sparsely sampled and hard to
measure (requires flame photometry for Na* and K*, and titration for Ca**),
using the information content of topsoil salinity, which is densely sampled and
easy to measure, taking into consideration the fact that these two variable are
correlated. The cokriged sodicity (SAR) is compared to the kriged sodicity
(SAR) and the standard error of estimation for both methods was matched.

MATERIALS AND METHODS
The Study Site
The study site is located about 90 km south of Alexandria, to the west
of Alex-Cairo desert road on Branch 20 irrigation canal. It comprises part of
the newly reclaimed sandy soils in West Nubaria region, which was
distributed to the graduates in 1990. The total acreage of the study area is
about 2500 hectares (map 1). Sampling Scheme
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Map 1: Location of the study area.

One hundred thirty four soil observations were collected over the
study area. The topsoil was analyzed for salinity (EC, dS/m). These soil
observations were used as a secondary data for interpolating the sodicity.
Twenty-eight soil observations were taken randomly as a subset of the
original data and analyzed for sodicity (SAR), which is considered as the
primary variable. The samples locations were georeferenced to the UTM
coordinate system. The spatial configuration of the soil observations used for
salinity and sodicity is shown in map 2.

Descriptive Statistical Analysis

The data for salinity and sodicity were analyzed for basic statistics
including mean, variance, standard deviation, minimum, maximum,
skewness, and kurtosis. The histogram for both variables was obtained, and
the correlation between the two variables was calculated.
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Map 2: Location of soil observations for sodicity and salinity

Semivariogram and Cross-semivariogram Analysis

The semivariogram is defined as half of the average squared
difference between two attribute values separated by vector h, for one
variable (Burrough and McDonnell, 1998):

1 N(h) | | ,
y(h)= 2N IZzl:{Z(XI) —Z(xi+h)}

where N(h) is the number of pairs at lag h, Z(xi) is the value of the attribute at
location (xi) and Z(xi + h) is the value of the attribute at location (xi + h)
separated by distance h. The separation vector h is specified with some
direction and distance (lag) tolerance. This semivariogram is used to model
both salinity and sodicity, and then fitting them to one of the known
semivariogram functions (Gaussian, Exponential, Spherical). In case of using
two variables (cokriging) the cross-semivariogram is calculated as follows:

1 N

yuv(h) = N ;{Zu (%) = Zu(%i + h)HZv (%) — Zv(xi + h)}
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where Zu (sodicity) and Zv (salinity) are the two variables. This equation is
used to model sodicity using the information content of salinity, then fitting the
obtained model to one of the known cross-semivariograms represented by
Gaussian, Spherical, and Exponential functions.

Cokriging

A co-kriged estimate is a weighted average in which the value of U at
location X is estimated as a linear weighted sum of co-variables V. If there
are k variables k = 1, 2, 3,. .. V, and each variable is measured at ny places,
xik = 1, 2, 3.... Nk, then the value of one variable U at xo is predicted by

(Burrough and McDonnell, 1998):
v Ny

Z'u (X0) = Z Z A (Xik) for all Vk
k=1 i=1
where Aik is the weight assigned to variable k and Z(xi) is the value of the
variable at location i.

To avoid bias, i.e. to ensure that

E[Zu(Xo) - Z7u(X0)]:0 and
the sum of weights Ak = 1 for U =V and
the sum of weights Ak = 0 for Vk = U

The first condition (sum of weights Aik = 1) implies that there must be
at least one observation of U for cokriging to be possible. The interpolation
weights are chosen to minimize the variance:

62 (Xo) = E[{Zu(Xo) — Z'u(X0)}?]

There is one equation for each combination of sampling site and
attribute, so for estimating the value of variable | at site xo, the equation for

the g-th observation site of the k-th variable is:
v Ny

ZZﬂij}/ﬁ(Xu, Xgk) + Dk = pv(Xo, Xgk)

j=1 i=1
for all g=1 to ny and all k=1 to V, where @« is the Lagrange’s multiplier. These
equations together make-up the cokriging system.

Cross Validation

Cross validation is a technique which is used to compare estimated
and true values using the information available in the data set. In cross
validation, the estimation method is tested at the locations of existing
samples. The sample value at a particular location is temporarily discarded
from the sample data set; the value at the same location is then estimated
using the remaining samples. Once the estimate is calculated, it is compared
to the true sample value that was initially removed from the sample data set.
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This procedure is repeated for all samples. This could be expressed as
(Issaks and Srivastava, 1989):

Error=r=v’-v

Where v’is the estimated value and v is the true value. Mean square error
(MSE) is calculated from the formula:

MSE =32

N5

Linking Geostatistics to Geographic Information Systems (GIS)

The estimates from cokriging and kriging, and the associated error
(Gamma Design, 2001) were exported to Arc View GIS software (ESRI, 1997)
for better visualization, mapping and printout.

RESULTS AND DISCUSSIONS

Description of Spatial Patterns

The analysis of spatial data starts with posting the data values. Map
(3) shows the spatial distribution of sodicity (SAR), and salinity (EC, dS/m),
sampled at 28 and 134 locations, respectively. The spatial distribution of the
variables is not random, but follows the regionalized theory, i.e., observations
close to each other on the ground tend to be more alike than those further
apart (Journel and Huijbregts, 1978). The presence of such spatial structure
is prerequisite to the application of Geostatistics, and represent the first step
towards spatial prediction (Burrough and McDonnell, 1998).

Descriptive Statistical Analysis

The statistical analysis of the salinity and sodicity is shown in table
(1). It is clear that salinity has more variability than sodicity as the CV% is
almost doubled. This is attributed to the greater number of soil samples (134)
used in the analysis compared to the number of samples (28) used for
sodicity analysis. Moreover, there is a greater number of soil samples with
low salinity values (figure 1), which lowered the mean compared to the
standard deviation. The histogram for both salinity and sodicity is shown in
figure (1). The distribution of both variables is positively skewed, indicating
the dominance of low values, with the presence of a very little high values that
might have an impact of the final estimates (Isskas and Srivastiava, 1989).
On the other hand, variance indicates that SAR has spread on a wide range
contrary to EC, which is distributed around a high number of samples with low
values (Figure 1).
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Map 3: Data posting for salinity (EC, dS/m) and sodicity (SAR).

Regression analysis of both salinity and sodicity indicated a positively
highly correlated two variables, which satisfies the need to carry out cokriging
analysis of sodicity using the information content of salinity. The correlation
coefficient for this analysis is 0.98. Yates and Warrick (1987) showed that if
the correlation coefficient between a primary variable and the covariable
exceeds 0.5, then the inclusion of the covariable is favorable, and cokriging
performs better than kriging. The following equation represents the regression
analysis of salinity and sodicity:

SAR=4.08+2.1EC r=0.98

Table 1. Descriptive statistical analysis for salinity (EC, dS/m) and
sodicity (SAR)

Statistical Parameter Sodicity(SAR) Salinity (EC, dS/m)
Mean 11.60 1.71
Standard Deviation 7.43 2.25

CV% (coefficient of variation) 64.05 131.58
Variance 55.29 5.06
Minimum 3.65 0.36
Maximum 28.85 12.24
Skewness 0.92 291
Kurtosis -0.29 8.20

N (number of samples) 28 134
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Figure 1: Histograms for salinity (above) and sodicity (below)

Salinity and Sodicity Semivariograms
The semivariograms for both salinity and sodicity were fitted to the
Gaussian model as shown in the following equation:

2
¥(h) = Co+CHl1— exp(—%)}
a

Where C, is the nugget, Ci is the sill, h is the separation distance
(lag) in meters, and a is the range. The parameters for the fitted
semivariograms for both salinity and sodicity are shown in table (2), and the
semivariograms are shown in figure (2). The formulated equations for these
two variables are as follows:

2
ysar(h) = 33.3+54.46{1— exp(— SN~ )}
(4670)2

2
yec(h) = 3.73+8.74{1—exp(— 3N~ )}
(11300)2

Table 2: Semivariogram types and parameters for salinity and sodicity

Variable Model Nugget (Co) | Sill (C1) | Range (a) | R? Lag (m)

SAR Gaussian 33.3 54.46 4670 0.95 1500

EC Gaussian 3.73 8.74 11300 0.91 500

It is clear that the coefficient of determination R? for both models
exceeds 0.90, which indicates the goodness of the estimation. Moreover, The
fitted Gaussian semivariogram indicates a smoothly varying pattern for both
variables (Burrough and McDonnell, 1998).

The Cross-semivariogram (Collocated semivariogram)

The cross-semivariogram of sodicity and salinity is of the collocated
type, which means that the estimation was performed using variables
measured at the same location. Table (3) and figure (3) indicate the
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parameters of the fitted Gaussian cross-semivariogram between sodicity and
salinity. The Gaussian joint semi-semivariogram is as follows:

2
yoar - ec(h) = 16.13+ 23.36{L— exp(- ")}
(4750)2

Table 3: Cross-semivariogram parameters between sodicity (SAR) and
salinity (EC, dS/m).

Variable Model |Nugget (Co)|Sill (C1) | Range (a) | R? | Lag (m)
SAR and EC |Gaussian 16.13 23.36 4750 0.95| 1500
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Figure 2: The semivariograms for salinity (above) and sodicity (below)
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Figure 3: The cross-semivariogram between sodicity and salinity

The most important parameter in this estimation is the high R2 (0.95)
obtained from the fitting process. This high estimation regression coefficient
comes very close to that of the simple linear regression (0.98) between
sodicity and salinity. The advantage of cokriging over linear regression is that
it takes into consideration the spatial variability of the surrounding points,
rather than performing blindly the linear regression, which lacks this
improvement.

Cokriging Compared to Kriging

The output from cokriging process is a map of the spatial distribution
of sodicity based on the information content and the high correlation with
salinity. Map 4A shows the cokriged sodicity and the associated standard
error of the estimates (Map 4B) for the study area.

Cokriged SAR SD

Cokriged SAR
[I11] SAR< 15
SAR> 15

1 0 1 2 3 4 5 Kilometers

Map 4: Cokriged SAR (A) and the associated standard deviation (B).
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It is clear that the cokriged SAR is smoothed out, because estimated
values are less variable than actual values. This is expressed by an
overestimation of small values while large values are underestimated,;
however the smoothing depends on the local data configuration (Goovaerts,
1999). The error (map 4B) is small in areas close to data locations and
increases as the location being estimated gets further away from sampled
locations, as compared with the map (3), which shows data posting. Another
reason for the smoothing is that the studied soil is mainly sandy, in which
salinity and sodicity is quite not a problem due to the dominance of the coarse
sand fraction, which hinder the upward movement of saline water table by
capillary rise.

Topsoil sodicity (SAR) was kriged in order to compare both the
cokriging results, and the standard error. Map (5) indicates the results of
kriging SAR and the associated standard deviation (SD).

Kriged SAR SD

([T} 5-6
6-7
66.6-77.3

Kriged SAR

[T < 15
B e15

1 5 Kilometers

—
|—__ 1

Map 5: Kriged SAR (A) and the associated standard deviation (B).

It is clear that kriging aggregated the high sodicity values in one
contiguous group due to the lack of information in the area between the
topsoil sodicity samples. On the other hand, cokriging utilized the information
content of soil salinity to predict the values of topsoil sodicity at un-sampled
locations. Moreover, the kriging standard deviation (standard error) shown in
map (5B) have much higher values especially at the boundary of the study
area, and behaved very erratically due to the lack of surrounding points. For
these reasons, cokriging is much preferred over kriging, especially if the
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primary variable is under-sampled, as in the case of topsoil sodicity (28
samples spread over an area of 2500 ha).

Cross Validation of Cokriging and Kriging

The process of cross validation between the estimated and the true
value permits the evaluation of cokriging performance. Figure (4) shows the
linear regression between the cokriged and actual values of sodicity (SAR).
The standard error (SE) of prediction is high (4.69) due to the above-
mentioned reasons related to smoothing effect of cokriging, and the
configuration of the data. The regression equation resulted from the cokriging
cross validation is as follows:

Cokriged SAR (predicted) = 3.92 + 0.76 SAR (measured)
r=0.78 SE prediction = 4.69

26.44

21.32

16.20

Actual SAR

11.07

5.95 11.07 16.20 21.32 26.44
Estimated SAR

Figure 4: Cross validation between cokriged and actual values of SAR.
(The solid line is the regression line, the dot-dash line is for r = 1)

For comparison sake, kriged SAR was cross validated to see how the

standard error (SE) of prediction behaves (Figure 5) and check the results
with cokriging estimates.

28.85 u
22.55

16.25

Actual SAR

9.95

365 .

3.65 9.95 16.25 22.55 28.85
Estimated SAR

Figure 5: Cross validation between kriged and actual values of SAR.
(The solid line is the regression line, the doted line is for r = 1)
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Figure (5) shows the linear regression between the kriged and actual
values of sodicity. The regression equation resulted from the cokriging cross
validation is as follows:

Kriged SAR (predicted) = 5.31 + 0.62 SAR (measured)
r=0.35 SE prediction = 6.97

The standard error of kriging prediction is much higher (6.97) than
that of cokriging (4.69). The kriging correlation coefficient is very poor (0.35),
as compared to the cokriging one (0.78).

For these reasons, cokriging is much preferred over kriging,
especially in the case of under-sampling the variable of interest. Moreover,
there must be an intensely sampled covaraible, which is correlated with the

variable of interest.
REFERENCES

Bahnassy, M.; A.S. Suliman and D.F. Post (1995). Geostatistical analysis of
topsoil and its reflectance properties of the Maricopa Agricultural
Center, USA. Alex. J. Agric. Res., 40(2): 225-242.

Bahnassy, M. and I.M. Morsy (1996). Geostatistical study of surface and
subsurface variables of bangar El-Sokkar soils. J. Agric. Sci. Mansoura
Univ., 21(7):2745-2758.

Banerjee, S. and A.E. Gelfand (2002). Prediction, interpolation and regression
for spatially misaligned data. The Indian Journal of Statistics, Volume
64, Series A, Part 2: 227-245.

Bogaert, P. (2002). Spatial prediction of categorical variables: the Bayesian
maximum entropy approach. Stochastic Environmental Research and
Risk Assessment, 16: 425-448

Burrough, P.A. (1989). Fuzzy mathematical methods for soil survey and land
evaluation. J. Soil Sci., 40: 477-492.

Burrough, P.A. and R. McDonnell (1998). Principles of geographic information
systems. Oxford University Press, New York.

Cressie, N. (1993). Statistics for spatial data. John Wiley and Sons. New
York.

Danielsson, A.; R. Carman; L. Rahm and J. Aigars (1998). Spatial Estimation
of Nutrient Distributions in the Gulf of Riga Sediments using Cokriging.
Estuarine, Coastal and Shelf Science, 46: 713-722

Deutsch, C.V. and A.G. Journel (1998). CSLIB: Geostaitistical Software
Library and User's Guide: 2" Edition. Oxford Univ. Press. New York.

El-Zahaby, E.M.; M. Bahnassy; A.M. El-Saadani and R.l. Fayed (1999).
Chemical and mineralogical properties and spatial variability of soils
under different environments of deposition, southeast Mariut lake.
Alex. J. of Agric. Res., 44(3):71-85.

ESRI. 1997. Arc View 3.2 user’'s manual. Redlands, CA, USA.

Gamma Design Inc. (2001). GS+ Geostatistical software user manual.
Plainwell, Michigan, USA.

8825



Bahnassy, M.

Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and
perspectives. Geoderma, 89: 1-45

Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial
variability of microbiological and physico-chemical soil properties. Biol
Fertil Soils, 27: 315-334.

Goovaerts, P. (1992). Factorial kriging analysis: a useful tool for exploring tile
structure of multivariate spatial soil information. J. Soil Sci., 43: 597-
619.

Isaaks, E.H. and R.M. Srivastava (1989). An Introduction to Applied
Geostatistics. Oxford University Press, New York.

Ishida, T. and H. Ando (1999). Use of disjunctive cokriging to estimate soil
organic matter from Landsat Thematic Mapper image. Intl. J. Remote
Sensing, 20(8): 1549- 1565.

Journal. A.G. and Ch. J. Huijbregts (1978). Mining Geostatistics. Academic
Press, New York.

McBratney, A.B. and R. Webster (1986). Choosing functions for
semivariograms of soil properties and fitting them to sampling
estimates. J. Soil Sci., 37: 617-639.

McBratney, A.B. and R. Webster (1983). Optimal interpolation and isarithmic
mapping of soil properties: V. Co-regionalization and multiple sampling
strategy. J. Soil Sci., 34: 137-162.

Myers, D.E. (1982). Matrix formulation of co-kriging. Mathematical Geology,
14: 249-257.

Rivoirard, J. (2001). Which Models for Collocated Cokriging?. Mathematical
Geology, 33: 117-131.

Trangmar, B.B.; R.S. Yost and G. Uehara (1985). Application of geostatistics
to spatial studies of soil properties. Advances in Agronomy, 38: 45-94

Wackernagel, H. (1994). Cokriging versus kriging in regionalized multivariate
data analysis. Geoderrna, 62: 83-9-2.

Wackernagel, H. (1995). Multivariate Geostatistics: An introduction with
application. Springer, New York.

Warrick, A.W.; D.E. Myers and D.R. Nielsen (1986). Geostatistical methods
applied to soil science. In: Methods of Soil Analysis, Part 1. Physical
and Mineralogical Methods. Agronomy Monograph no. 9, 2" Edition.,
pp. 53-82.

Webster, R. (1991). Local disjunctive kriging of soil properties with change of
support. J. Soil Sci., 42: 301-318.

Webster, R. and M.A. Oliver (1989). Optimal interpolation and isarithmic
mapping of soil properties: VI. Disjunctive kriging and mapping the
conditional probability. J. Soil Sci., 40: 497-512.

Yates, S.R. and A.W. Warrick. (1987). Estimating soil water content using
cokriging. Soil Sci. Soc. Am. J., 51: 23-30.

8826



J. Agric. Sci. Mansoura Univ., 27 (12), December, 2002

a) gl Glwa 48y b ﬂASlﬁdéaﬂalLuJ\lﬁgﬂ\agqgﬁalggL«x;uHé‘}gai
& yidiall

(i (e e

4,0l Analy — (abladl) de) 3l 43S — slaall g (il Y1 asle aud

adind | ga V) pal Al e asl Suad Ahay gl Aaglaadl slaayl a6
Leie 235 ol @bl g0 (4 Al jall Cond dpalall ay il il G (218 Ll )Y e kriging ok
@5 A syl als G (2 Al LLSY) (e adi cokriging ol , AT Gl e clie
65 puaiall il slaall (s sinal) aladiuly (AL Clie Lgie 335 il 5) Aud )l cand Al daal)
el e s o Ledie collocated COKIiging 4 b aadiud (3488 Clie 40 My 53l )
ol coKriging 4k alasiul I 4l 4w ,all Chags OISl aid (e o el 5 i)
e YA (B Auidl 5 dndaudl 28kl (bl i) SAR o sall Gabiael 4 g 55 Adayja
SAR aff il i 35 Aue VVE 3 i)y (sl uriall) dadandl Akl s gle il slae aladinly
VY,YE 5 ¥ Gy daadand) A5 A sle ad Calial (a8 YALAS 5 ¥,T0 Gy daland) dGla) b
AhaiaY hyd aal g lee 94 gl 5 dagldl g or B,V delee S S5 dS/m
CUEAY) a5 KA fitting  Jee &5 25 L cpomiall (e bl )l Jalas 2525 585 cokriging
<Xy Gaussian gise gy S B (Lasall 5 dasldl) Giualall e I semivariogram
Aoy A sy o3 My Gaussain ziss e OIS cross-semivariogram odisaldll fu calaill
S ALaYL kriging aladiuel 4 geall a5 55 3day A 635 lie 5 cokriging pladiuly 4 seall 568
bl Uadd) 555 Aoy A ausy 5 Led cross-validation dee o 38 sty skl (e 0S5 50840 adll
kS kriging alaiul e cokriging ) alaaiul liadl Ciad) 138 ma sl 25 4 gunal) agily 43 )il
Al Al AT juie dgas ae A all cnd puidl ALE Glie mead Q8 1)) Aala bl Al an gy 3k
bl il a8 Lol

8827



