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ABSTRACT 

 
 Geostatistics provides descriptive tools to characterize the spatial 
distribution of soil attributes. Kriging techniques rely on the spatial 
dependence between observations to predict attribute values at un-sampled 
locations. Cokriging on the other hand, utilizes the spatial correlation between 
two variables to map the primary one, which is under-sampled, using 
information content of the secondary variable. Collocated cokriging is used 
when the primary and the secondary variables are sampled at the same 
location. The present study aimed at applying collocated cokriging to map 
topsoil sodicity (primary variable) measured in 28 samples, using the 
information content of topsoil salinity (secondary variable) measured in 134 
samples. Topsoil sodicity (SAR) ranged between 3.65 and 28.85, whereas 
topsoil salinity (EC) varied from 0.36 to 12.24 dS/m. The correlation 
coefficient, r, between the two variables is 0.98, which satisfies the most 
important criteria for carrying out cokriging. The fitted semivariograms for both 
variables are Gaussian, and the cross-semivariogram between the two 
variables is also Gaussian. The cokriged spatial distribution of topsoil sodicity 
was mapped and compared to kriged SAR. The cokriging results were cross-
validated and the standard error of estimation was matched to that of kriging. 
The study showed the superiority of cokriging upon kriging as a spatial 
mapping method, especially if the primary variable is under-sampled. 
Keywords: Geostatistical analysis, Collocated cokriging, Kriging, Salinity, 

Sodicity, Cross-semivariogram, Semivariogram,   
 

INTRODUCTION 
 
 Geostatistics has been applied by many researchers to describe the 
spatial variability using the semivariogram and predict the values of soil 
attributes at un-sampled locations by different kriging (named after D.J. Krige) 
techniques (Trangmar et al., 1985; Warrick et al., 1986; Webster and Oliver, 
1989; Burrough, 1989; Webster, 1991; Goovaerts, 1992, 1998b and 1999; 
Bahnassy et at. 1995; Bahnassy and Morsy, 1996 and El-Zahaby et al. 1999), 
ecological properties (Banerjee and Gelfand, 2002), and categorical variables 
(Bogaert, 2002). The term cokriging is used for spatial linear regression that 
uses data defined by different attributes. The data set will contain the primary 
variable of interest in addition to one or more secondary variables, which are 
spatially cross-correlated with the primary variable. Thus, the dataset will 
contain useful information about the primary variable. The cross-correlation 
between variables is utilized to improve these estimates, and to reduce the 
variance of the estimation error. The usefulness of the secondary variable is 
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often enhanced by the fact that the primary variable of interest is under-
sampled (Issacks and Srivastava, 1989). The spatial relationship between the 
values of the attribute is governed by the regionalized variable theory, which 
states that observations close to each other are more correlated than 
observations taken at a further distance (Journel and Huijbregts, 1978). This 
means that points spatially close to the estimation points should be given 
higher weights than those further away (Cressie, 1993). The coregionalized 
variable theory deals with the same situation as the regionalized variable 
theory, but the variables under consideration are correlated, and behave the 
same (McBratney and Webster, 1983 and 1986). Consequently, the cross-
semivariogram can be modeled as a joint function between the two variables 
(Issacks and Srivastava, 1989). The linear coregionalization model allows for 
different ranges of spatial correlations for each variable (Wackernagel, 1994 
and 1995). Due to computation and notation difficulties related to cokriging 
system (Journel and Huijbregts, 1978; Myers, 1982; and Deutsch and 
Journel, 1998), a limited number of researches have been carried out utilizing 
cokriging as a best linear unbiased estimator (B.L.U.E.). Danielsson et al, 
(1998) applied cokriging to estimate the total amounts and the spatial 
distribution for organic carbon, nitrogen and phosphorus in the Gulf of Riga 
surficial sediments, using loss on ignition as a covariable. Goovaerts (1998) 
used different methods of kriging and cokriging to model the spatial 
distribution of pH and electrical conductivity in two transects in forest and 
pasture soils. Ishida and Ando (1999) utilized disjunctive cokriging to estimate 
soil organic matter from Landsat Thematic Mapper image. Rivoirard (2001) 
indicated that the cokriging could be collocated or multi-collocated depending 
on the configuration of data and the location at which the value will be 
estimated. 

The purpose of this study is to apply cokriging to predict the values of 
the primary variable (topsoil sodicity), which is sparsely sampled and hard to 
measure (requires flame photometry for Na+ and K+, and titration for Ca++), 
using the information content of topsoil salinity, which is densely sampled and 
easy to measure, taking into consideration the fact that these two variable are 
correlated. The cokriged sodicity (SAR) is compared to the kriged sodicity 
(SAR) and the standard error of estimation for both methods was matched.  

 

MATERIALS AND METHODS 
The Study Site 
 The study site is located about 90 km south of Alexandria, to the west 
of Alex-Cairo desert road on Branch 20 irrigation canal. It comprises part of 
the newly reclaimed sandy soils in West Nubaria region, which was 
distributed to the graduates in 1990. The total acreage of the study area is 
about 2500 hectares (map 1). Sampling Scheme 
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Map 1: Location of the study area. 
 
 One hundred thirty four soil observations were collected over the 
study area. The topsoil was analyzed for salinity (EC, dS/m).  These soil 
observations were used as a secondary data for interpolating the sodicity. 
Twenty-eight soil observations were taken randomly as a subset of the 
original data and analyzed for sodicity (SAR), which is considered as the 
primary variable. The samples locations were georeferenced to the UTM 
coordinate system. The spatial configuration of the soil observations used for 
salinity and sodicity is shown in map 2. 
 
Descriptive Statistical Analysis 
 The data for salinity and sodicity were analyzed for basic statistics 
including mean, variance, standard deviation, minimum, maximum, 
skewness, and kurtosis. The histogram for both variables was obtained, and 
the correlation between the two variables was calculated. 
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Map 2: Location of soil observations for sodicity and salinity 
 
Semivariogram and Cross-semivariogram Analysis 
 The semivariogram is defined as half of the average squared 
difference between two attribute values separated by vector h, for one 
variable (Burrough and McDonnell, 1998):  
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where N(h) is the number of pairs at lag h, Z(xi) is the value of the attribute at 
location (xi) and Z(xi + h) is the value of the attribute at location (xi + h) 
separated by distance h. The separation vector h is specified with some 
direction and distance (lag) tolerance. This semivariogram is used to model 
both salinity and sodicity, and then fitting them to one of the known 
semivariogram functions (Gaussian, Exponential, Spherical). In case of using 
two variables (cokriging) the cross-semivariogram is calculated as follows: 
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where Zu (sodicity) and Zv (salinity) are the two variables. This equation is 
used to model sodicity using the information content of salinity, then fitting the 
obtained model to one of the known cross-semivariograms represented by 
Gaussian, Spherical, and Exponential functions. 
 
Cokriging 
 A co-kriged estimate is a weighted average in which the value of U at 
location xo is estimated as a linear weighted sum of co-variables Vk. If there 
are k variables k = 1, 2, 3,. . . V, and each variable is measured at nv places, 
xik = 1, 2, 3.... Nk, then the value of one variable U at xo is predicted by 
(Burrough and McDonnell, 1998): 
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where ik is the weight assigned to variable k and Z(xik) is the value of the 
variable at location i.  
 
To avoid bias, i.e. to ensure that 
 

E[zu(xo) – z’u(xo)]=0 and 

the sum of weights ik = 1 for U = V and 

the sum of weights ik = 0 for Vk   U 
 

 The first condition (sum of weights ik = 1) implies that there must be 
at least one observation of U for cokriging to be possible. The interpolation 
weights are chosen to minimize the variance: 
 

2
u (xo) = E[{zu(xo) – z’u(xo)}2] 

 
 There is one equation for each combination of sampling site and 
attribute, so for estimating the value of variable j at site xo, the equation for 
the g-th observation site of the k-th variable is: 
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for all g=1 to nv and all k=1 to V, where k is the Lagrange’s multiplier. These 
equations together make-up the cokriging system. 
 
Cross Validation 
 Cross validation is a technique which is used to compare estimated 
and true values using the information available in the data set. In cross 
validation, the estimation method is tested at the locations of existing 
samples. The sample value at a particular location is temporarily discarded 
from the sample data set; the value at the same location is then estimated 
using the remaining samples. Once the estimate is calculated, it is compared 
to the true sample value that was initially removed from the sample data set. 
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This procedure is repeated for all samples. This could be expressed as 
(Issaks and Srivastava, 1989): 
 

Error = r = v’ - v 
 
Where v’ is the estimated value and v is the true value. Mean square error 
(MSE) is calculated from the formula: 
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Linking Geostatistics to Geographic Information Systems (GIS) 
 The estimates from cokriging and kriging, and the associated error 
(Gamma Design, 2001) were exported to Arc View GIS software (ESRI, 1997) 
for better visualization, mapping and printout. 
 

RESULTS AND DISCUSSIONS 
 
Description of Spatial Patterns 
 The analysis of spatial data starts with posting the data values. Map 
(3) shows the spatial distribution of sodicity (SAR), and salinity (EC, dS/m), 
sampled at 28 and 134 locations, respectively. The spatial distribution of the 
variables is not random, but follows the regionalized theory, i.e., observations 
close to each other on the ground tend to be more alike than those further 
apart (Journel and Huijbregts, 1978). The presence of such spatial structure 
is prerequisite to the application of Geostatistics, and represent the first step 
towards spatial prediction (Burrough and McDonnell, 1998). 
 
Descriptive Statistical Analysis 
 The statistical analysis of the salinity and sodicity is shown in table 
(1). It is clear that salinity has more variability than sodicity as the CV% is 
almost doubled. This is attributed to the greater number of soil samples (134) 
used in the analysis compared to the number of samples (28) used for 
sodicity analysis. Moreover, there is a greater number of soil samples with 
low salinity values (figure 1), which lowered the mean compared to the 
standard deviation. The histogram for both salinity and sodicity is shown in 
figure (1). The distribution of both variables is positively skewed, indicating 
the dominance of low values, with the presence of a very little high values that 
might have an impact of the final estimates (Isskas and Srivastiava, 1989).  
On the other hand, variance indicates that SAR has spread on a wide range 
contrary to EC, which is distributed around a high number of samples with low 
values (Figure 1). 
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Map 3: Data posting for salinity (EC, dS/m) and sodicity (SAR). 
 
 Regression analysis of both salinity and sodicity indicated a positively 
highly correlated two variables, which satisfies the need to carry out cokriging 
analysis of sodicity using the information content of salinity. The correlation 
coefficient for this analysis is 0.98. Yates and Warrick (1987) showed that if 
the correlation coefficient between a primary variable and the covariable 
exceeds 0.5, then the inclusion of the covariable is favorable, and cokriging 
performs better than kriging. The following equation represents the regression 
analysis of salinity and sodicity: 

SAR = 4.08 + 2.1 EC  r = 0.98 
 

Table 1: Descriptive statistical analysis for salinity (EC, dS/m) and 
sodicity (SAR) 

Statistical Parameter Sodicity(SAR) Salinity (EC, dS/m) 

Mean 
Standard Deviation 
CV% (coefficient of variation)  
Variance 
Minimum 
Maximum 
Skewness 
Kurtosis 
N (number of samples) 

11.60 
7.43 

64.05 
55.29 
3.65 

28.85 
0.92 
-0.29 

28 

1.71 
2.25 

131.58 
5.06 
0.36 
12.24 
2.91 
8.20 
134 
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Figure 1: Histograms for salinity (above) and sodicity (below) 
 
Salinity and Sodicity Semivariograms  
 The semivariograms for both salinity and sodicity were fitted to the 
Gaussian model as shown in the following equation: 
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 Where Co is the nugget, C1 is the sill, h is the separation distance 
(lag) in meters, and a is the range. The parameters for the fitted 
semivariograms for both salinity and sodicity are shown in table (2), and the 
semivariograms are shown in figure (2). The formulated equations for these 
two variables are as follows: 
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Table 2: Semivariogram types and parameters for salinity and sodicity 
Variable Model Nugget (Co) Sill (C1) Range (a) R2 Lag (m) 

SAR Gaussian 33.3 54.46 4670 0.95 1500 

EC Gaussian 3.73 8.74 11300 0.91 500 

 
 It is clear that the coefficient of determination R2 for both models 
exceeds 0.90, which indicates the goodness of the estimation. Moreover, The 
fitted Gaussian semivariogram indicates a smoothly varying pattern for both 
variables (Burrough and McDonnell, 1998).  
 
The Cross-semivariogram (Collocated semivariogram) 
 The cross-semivariogram of sodicity and salinity is of the collocated 
type, which means that the estimation was performed using variables 
measured at the same location. Table (3) and figure (3) indicate the 
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parameters of the fitted Gaussian cross-semivariogram between sodicity and 
salinity. The Gaussian joint semi-semivariogram is as follows:   

)}3exp(1{36.2313.16)(
2

)4750(

2hhECSAR   

Table 3: Cross-semivariogram parameters between sodicity (SAR) and 
salinity (EC, dS/m). 

Variable Model Nugget (Co) Sill (C1) Range (a) R2 Lag (m) 

SAR and EC Gaussian 16.13 23.36 4750 0.95 1500 

 
 

 
Figure 2: The semivariograms for salinity (above) and sodicity (below) 
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Figure 3: The cross-semivariogram between sodicity and salinity  

 
 The most important parameter in this estimation is the high R2  (0.95) 
obtained from the fitting process. This high estimation regression coefficient 
comes very close to that of the simple linear regression (0.98) between 
sodicity and salinity. The advantage of cokriging over linear regression is that 
it takes into consideration the spatial variability of the surrounding points, 
rather than performing blindly the linear regression, which lacks this 
improvement. 
Cokriging Compared to Kriging 
 The output from cokriging process is a map of the spatial distribution 
of sodicity based on the information content and the high correlation with 
salinity. Map 4A shows the cokriged sodicity and the associated standard 
error of the estimates (Map 4B) for the study area.  

Map 4: Cokriged SAR (A) and the associated standard deviation (B). 
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 It is clear that the cokriged SAR is smoothed out, because estimated 
values are less variable than actual values. This is expressed by an 
overestimation of small values while large values are underestimated; 
however the smoothing depends on the local data configuration (Goovaerts, 
1999). The error (map 4B) is small in areas close to data locations and 
increases as the location being estimated gets further away from sampled 
locations, as compared with the map (3), which shows data posting. Another 
reason for the smoothing is that the studied soil is mainly sandy, in which 
salinity and sodicity is quite not a problem due to the dominance of the coarse 
sand fraction, which hinder the upward movement of saline water table by 
capillary rise. 
 Topsoil sodicity (SAR) was kriged in order to compare both the 
cokriging results, and the standard error. Map (5) indicates the results of 
kriging SAR and the associated standard deviation (SD).   
 

Map 5: Kriged SAR (A) and the associated standard deviation (B). 
 
 It is clear that kriging aggregated the high sodicity values in one 
contiguous group due to the lack of information in the area between the 
topsoil sodicity samples. On the other hand, cokriging utilized the information 
content of soil salinity to predict the values of topsoil sodicity at un-sampled 
locations. Moreover, the kriging standard deviation (standard error) shown in 
map (5B) have much higher values especially at the boundary of the study 
area, and behaved very erratically due to the lack of surrounding points. For 
these reasons, cokriging is much preferred over kriging, especially if the 
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primary variable is under-sampled, as in the case of topsoil sodicity (28 
samples spread over an area of 2500 ha). 
 
Cross Validation of Cokriging and Kriging 
 The process of cross validation between the estimated and the true 
value permits the evaluation of cokriging performance. Figure (4) shows the 
linear regression between the cokriged and actual values of sodicity (SAR). 
The standard error (SE) of prediction is high (4.69) due to the above-
mentioned reasons related to smoothing effect of cokriging, and the 
configuration of the data. The regression equation resulted from the cokriging 
cross validation is as follows:  
 

Cokriged SAR (predicted) = 3.92 + 0.76 SAR (measured)  
r = 0.78  SE prediction = 4.69 

Figure 4: Cross validation between cokriged and actual values of SAR.  
            (The solid line is the regression line, the dot-dash line is for r = 1) 
 
 For comparison sake, kriged SAR was cross validated to see how the 
standard error (SE) of prediction behaves (Figure 5) and check the results 
with cokriging estimates.  

Figure 5: Cross validation between kriged and actual values of SAR. 
(The solid line is the regression line, the doted line is for r = 1) 
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 Figure (5) shows the linear regression between the kriged and actual 
values of sodicity. The regression equation resulted from the cokriging cross 
validation is as follows:  
 

Kriged SAR (predicted) = 5.31 + 0.62 SAR (measured)   
r = 0.35  SE prediction = 6.97 

 
 The standard error of kriging prediction is much higher (6.97) than 
that of cokriging (4.69). The kriging correlation coefficient is very poor (0.35), 
as compared to the cokriging one (0.78).  
 For these reasons, cokriging is much preferred over kriging, 
especially in the case of under-sampling the variable of interest. Moreover, 
there must be an intensely sampled covaraible, which is correlated with the 
variable of interest. 
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حسلللايصيتحصوللطي لريطللق تحليللجيويحصحئلللصوييئللحطيقيصيلسطللقيصيسلللحيقيسلسللت طص 
يصيمشترك

يمحمطيحسنيسهنسى
يولمعقيصلإسكنطريقي–كليقيصيزرصعقي)صيشللسى(يي–فس يعلح يصلأرصضويحيصيميلهي

 
ع الفراغى لخواص الأرض. تعتمد تقدم الإحصاء الجيولوجية أدوات وصفية لتمييز التوزي 

على الارتباط الفراغى بين العينات للتنبؤ بقيم الخاصية تحت الدراسة فى مواقع لم يؤخذ منها   krigingطرق
يستفيد من الارتباط الفراغى بين خاصيتين لرسم خريطة توزيع  cokrigingعينات. من جانب آخر, فان 

منها عينات قليلة( باستخدام المحتوى المعلوماتى للمتغير الثانوى  الصفة الأساسية تحت الدراسة )والتى يؤخذ
عندما يتم جمع عينات المتغير   collocated cokriging)والذى يؤخذ منه عينات كثيرة(. تستخدم طريقة  

لرسم  cokrigingالأساسي و المتغير الثانوى من نفس المكان. تهدف الدراسة الحالية إلى استخدام طريقة 
 عينة 28)المتغير الاساسى( للطبقة السطحية و المقاسة فى  SARتوزيع نسبة ادمصاص الصوديوم   ةخريط

  SARعينة. وقد تراوحت قيم  134باستخدام معلومات ملوحة الطبقة السطحية )المتغير الثانوى( والمقاسة فى 
 12.24و  0.36سطحية بين , فى حين اختلفت قيم ملوحة الطبقة ال 28.85و  3.65فى الطبقة السطحية بين 

dS/m   وقد كان معامل الارتباط .r   مما يوفى أهم شرط لاستخدام  0.98بين الملوحة و الصودية
cokriging  وهو وجود معامل ارتباط عالى بين المتغيرين. وقد تم عملfitting   لشكل توزيع الاختلافات

semivariogram قد كان يتبع نموذج لكل من الخاصيتين )الملوحة و الصودية( وGaussian   وكذلك
. وقد تم رسم خريطة Gaussainكان يتبع نموذج  cross-semivariogramالتصاحب بين الخاصيتين 
. بالإضافة إلى krigingو مقارنتها بخريطة توزيع الصودية باستخدام  cokrigingتوزيع الصودية باستخدام 

لها ورسم خريطة توزيع الخطأ القياسى  cross-validationل أن القيم المقدرة بكل من الطريقتين قد تم عم
كأحد  krigingعن استخدام  cokrigingلمقارنته بالقيم المحسوبة. وقد أوضح هذا البحث أفضلية استخدام الـ 

طرق رسم الخرائط, خاصة إذا تم تجميع عينات قليلة للمتغير تحت الدراسة, مع وجود متغير آخر له علاقة 
    ية مع المتغير الأساسى .ارتباط قو

 


