THE EFFECT OF SOIL PROPERTIES ON SOIL EROSION AND ITS RELATION TO ENVIRONMENTAL PROTECTION CAPACITY (EPC_G)

Abd El-Hady, A.A.* and M.F. Abou Youssef **

* Soil Dept. Faculty of Agric. Cairo Univ., Giza Egypt

** Desert Research Center, El-Matariya, Cairo, Egypt

ABSTRACT

Sixteen soil profiles representing the soils of the area at the western beach of Suez Canal according to the different in sediments and land use period such as alluvial-windborn, and Recent Aeolian sand deposits. Soil classification reveals that soil ranged between Typic Torrifluvents, Typic Torrifluvents, Typic Torriorthents and Typic Torripsamments.

From the physical and chemical characteristics of the soils, the clay distribution is significantly different between high and low parts while there is no significant difference in sand fraction distribution. OM distribution affected by topography, land use and cover vegetation. There is no significant difference in CaCO₃ distribution. CEC values differented from parts to another refered to the clay content. Bulk density values differented according to the difference in texture. Stability aggregate values varied from high parts and low parts refered to difference in topography, parent material, period of landuse and clay content. From the study the pervious condition caused increase of the negative effect of wind erosion as well as of environmental protection capacity (EPC_G).

Environmental Protection Capacity (EPC_G) as a factor to study the wind erosion shows that there is highly significant correlations between EPC_G factor and sand, silt, clay OM, CaCO₃, CEC, exchangeable (Ca⁺⁺, Mg⁺⁺, Na⁺ and Na⁺), stability aggregate and bulk density, while no significant correlation with pH, EC and C/N ratio in soils.

Path analyses show that soil properties such as OM, bulk density, clay, dispersion ratio, stability aggregate and $CaCO_3$ have direct effect on the EPC_G.

Keywords: Soil Erosion, Environmental Protection Capacity, Alluvial-windborn, Recent Aeolian sand deposits.

INTRODUCTION

Most of the soils of the area west of Suez Canal are sand. The climatic conditions in the area located west of Suez canal indicated that the chemical weathering and the development are weak and there is mostly physical weathering due to variation in temperature and wind erosion in most parts of this area and scarcity of rainfall, Shata 1984. Erosion is a significant problem on agricultural lands throughout in many parts of the world (Oldeman, 1991). Erosion is particularly severe in arid and semiarid areas, which constitute one-third of the world's population (Mirzamosta, et. al, 1998). The main object of the current work is to illustrate the effect of Erosion on the soils under investigation.

Climatic Conditions:

According to the average meteorological data of the period from (1951 to 1985) in Table 1 and exerthermic diagram Fig. 1 indicate that arid conditions prevails in the studied area during most of the year:

The present arid nature of the climate has a great effect on the landscape of this area. This is manifested in the several phenomena of wind deflation including formation of desert pavement on the top soil as well as in the accumulation of sand dunes in the plains. In addition features related to the previous climatic conditions occur as a result of changes in climate during the Pleistocene period, which had their effect on soil formation. The numerous dry drainage lines which occur in the southern part of the area are good indication of the past climate condition.

Month	Ter	nperature (°C)	Rainfall	Evapora-	Humidity Relative	Wind
MONUT	maximum	Minimum	Mean	(mm)	(mm/dav)	(%)	m/sec
January	20.4 8.1 1		14.2	4.4 4.7		55	3.5
February	21.7	9.1	15.4	4.7	5.4	52	4.6
March	23.9	11.0	17.4	3.0	6.8	46	4.7
April	27.6	13.6	20.6	1.1	7.0	45	4.1
May	32.1	17.3	24.7	0.8	9.8	42	3.8
June	34.8	20.2	27.5	0.0	9.7	45	3.2
July	36.4	22.2	29.3	0.0	9.3	48	3.8
August	36.5	22.5	29.5	0.0	9.6	49	3.5
September	33.9	20.7	27.3	0.0	7.5	52	3.0
October	30.7	17.8	24.2	2.2	6.4	54	3.2
November	26.6	13.9	20.2	4.7	4.7	58	2.6
December	21.5	10.0	15.8	8.5	3.8	65	3.2
Annual mean	28.8	15.5	22.2	2.8	7.06	50.8	3.6

Table 1: The climatological normal data of the investigated area

Fig. 1: Xerothermic diagram of the west Suez canal area.

Geology and geomorphology:

According to Ball 1939, said 1962, El-Fayomy 1968, Abu Al-Izz 1971, and Shata 1978, the area west of Suez canal is totally occupied by sedimentary rocks belonging to the tertiary and the guaternary epochs. Land from recognized in this area are named alluvial fans, out wash plain, wadi plains, wadi Bottoms, wind blown sand, river terraces and deltic stage of the river terraces. Bayoumy (1971) reported that the elevation decreases from south (Ismaleyia Canal) to north (Manzala Lake). He added the natural vegetation is obviously related to the past atmospheric climate in the region of the Nile Delta. The natural vegetation is found to be scarce and the production of organic matter in the soil is low because the rate of its decomposition is rather high. He also mentioned that the climate of this area is more arid than the Mediterranean coastal zone, yet it is relatively milder than that of the internal desert. Shata (1984) showed that as a result of climatic conditions in the area located west of Suez Canal, chemical weathering and development are weak and there is mostly physical weathering due to variations in temperature, wind erosion in most parts of this area and acarcity of rainfall. El-Fayoumy (1968) associated the underground water with the dominant geomorphology in the region west of Suez Canal and distinguished the following, fluviomarine plain water which unsuitable for irrigation as well as Salhiya plain water pavement plain water suitable for irrigation.

Soil Erosion:

Most of wind tunnel studies of aeolian have been concerned with the threshold velocity for particle environment, the nature of particle trajectories, and grain interactions (Bagnold, 1973, Anderson, 1987, Ungar and Haff, 1987, Iversen *et al.*, 1987, and Werner (1988) according to Wassif *et al.*, (2000) as the results showed that the values of threshold velocity ranged between 6.1-6.6m/s. Such values varied according to the particle size distribution of soil.

MATERIALS AND METHODS

According to parent material, land use and topography of soils of the area sixteen soil profiles have been chosen to represent the different soils.

Description of the soil profiles were recorded on the bases guidelines by FAO (1990). Soil samples were collected from the morphologically different layers. The samples were dried, ground, passed through a 2 mm stainless steel sieve and kept in polyethylene bags for analyses. Particle size distribution was carried out according to Piper (1950), The water extract components were determined in the soil extract (1:1) and the following determinations were carried out using the standard methods of analysis by Jackson (1979) and Page *et al.* (1982). Exchangeable cations were determined using ammonium acetate extraction. Cations exchange capacity was determined using sodium acetate method Jackson (1979) and Page *et al.* (1982). Soil reaction (pH) was determined in the soil extract (1:1), Richards (1954). Exchangeable cations were determined according to

Abd El-Hady, A.A. and M.F. Abou Youssef

Jackson (1979) and Page *et al.* (1982). Collin's calcimeter were used for CaCO₃ determination according the method described by Wright (1939). Organic matter was determined following the modified Walkley and Black method, Jackson (1979) and Page *et al.* (1982). Soil classification according to Soil Survey Staff (1996). Bulk density stability aggregates according to Klute (1986)

Statistical analysis for Erosion:

In the area under investigation the environmental protection capacity (EPC_G) of these soil profiles was determined. This parameter is based on the organic matter content of the soil, the stability coefficient characterized by the quality of organic matter and the thickness of top soil. The general EPC_G is expressed as follows:

 $EPC_G = D_x H^2 K$

Where (D_x) is the thickness of top soil (in cm), (H) is the humus content (in %) and (K) is the stability coefficient characterized by humus quality.

Path analysis, a statistical technique that differentiates between correlation and causation, was used to describe EPC_G values in soil. Path analysis is a model has been chosen to evaluate the effect of soil properties on EPC_G values by soil samples.

RESULTS AND DISCUSSION

The area under investigation is bordered in the east by the Suez Canal, in the west by Nile Delta, in the north by El-Manzala Lake, and south by the Ismaleiya Canal. The area is situated longitudes 31° 10° west and 32° 20° east, and latitudes 31° north and 30° 30° south, as shown in Fig. 2. The northern part of the area is occupied by fluviomarine plains and swamps around El-Manzala Lake, while sandy gravelly terraces (Pavement plain) occupy the southern part. A flat sandy plain (Salhiya plain) partially occupied by sand dunes is located between these two land forms.

The area under investigation could be classified according to parent material and period of land use to alluvial – wind blown deposits represented by profiles 1, 2, 3 and 4, and recent aeolian sand deposits represented by profiles 5, 6, 7, 8, 9,10, 11,12,13, 14, 15 and 16. The period of land use 15, 40 years represented by soil profiles 1, 2, 3 and 4, while the period of land use 20 years represented by soil profiles 9, 10, 11 and 12. The period of land use 10 years is represented by profiles 8, and 14 and the period of land use 5 years 5, 13, 15 and 16. The barren soil is represented by soil profile 6.

Alluvial-wind born deposits:

The period of land use 40 years:

These soils are represented by soil profiles 1, 2, 3, 4 and morphologically described, Physical, and chemical analyses data showed in Tables 2, 3, 4. The morphological data as colour textures, structure and consistence showed that there is variation between the layers of soil profiles which could be referred to the parent material and land use.

2c

J. Agric. Sci. Mansoura Univ., 26 (11), November, 2001.

The texture is varied from clay loam in the surface layer to loamy sand in the deepest layer pH lies in the moderately alkaline range CaCO₃ ranged between 3.42 and 0.98%, O.M ranged between 2.35% in the surface and decrease with depth to 0.32%, EC is low, CEC ranged between 28.49 meq/100g soil and decrease with depth to 6.86 meq/100g soil, ESP is less than 15% and the soil classified as Typic torrifluvents.

Fig.2: Locations of the studied profiles

Abd El-Hady, A.A. and M.F. Abou Youssef

Prof.	Depth	Sand	Silt	Clay	Texture	Clay	Sepa-	FPC	St	Thick-
No.	(cm)	%	%	%	Class	ratio	ration ratio		Coeff.	Ness cm
1	0-20	40.50	30.30	29.20	Clay loam	0.4124	1.5616	51.335	0.4647	20
	20-50	8.48	29.40	28.50	Clay loam	0.7524	1.5000	68.646	0.6406	30
	50-80	33.65	13.18	21.32	S.C. loam	0.4553	1.4000	27.513	0.9782	50
	80-120	50.50	18.08	22.42	Loam	0.3269	1.3002	4.4351	1.0181	40
2	0-20	55.62	19.41	24.97	S.C. loam	0.3328	1.3997	24.718	0.1192	20
	20-60	60.81	10.44	28.75	S.C. loam	0.4035	1.4000	96.293	0.5958	40
	60-90	70.52	18.59	10.89	S. loam	0.1222	1.1993	26.784	0.9296	30
	90-120	80.83	10.19	8.98	L. sand	0.0986	1.1002	4.6425	1.0174	30
3	0-30	41.89	27.55	30.56	Clay loam	0.4401	1.5000	76.916	0.4804	30
	30-60	59.50	18.08	22.42	Loam	0.2889	1.3002	16.508	0.9782	30
	60-90	55.62	19.41	24.97	S.C.loam	0.3328	1.4001	11.514	0.9984	30
	90-120	65.21	15.43	13.36	S.loam	0.1656	1.3795	3.1276	1.0180	30
4	0-20	65.34	9.03	25.63	S.C. loam	0.3446	1.3999	50.655	0.5233	20
	20-50	51.21	28.69	22.42	Loam	0.2806	1.3002	35.123	0.8853	30
	50-80	69.21	15.43	14.22	S. loam	0.1680	1.2960	16.508	0.9782	30
	80-120	80.83	10.19	8.98	L. sand	0.0986	1.1002	4.9888	1.0181	40
5	0-30	89.33	5.43	6.24	Sand	0.0658	1.0993	11.514	0.9984	30
	30-70	90.56	4.44	5.76	Sand	0.0606	1.1007	0.9067	1.0075	40
	70-110	90.72	4.21	4.87	Sand	0.0513	1.1006	0.4850	1.002	40
6	0-30	89.82	4.54	5.64	Sand	0.0597	1.0993	9.4608	1.0056	30
	30-70	92.21	3.80	3.99	Sand	0.0416	1.0977	5.5739	1.0178	40
	70-100	90.92	4.21	4.87	Sand	0.0512	1.1006	0.0743	0.9918	30
	100- 130	70.11	4.68	5.21	Sand	0.0696	1.0998	0.1463	0.9955	30
7	0-30	93.00	4.00	3.49	Sand	0.0359	1.1003	9.7911	1.0045	30
	30-60	90.14	4.65	5.21	Sand	0.0549	1.0998	3.7416	1.0181	30
	60-90	89.33	5.43	6.24	Sand	0.0658	1.0993	1.9048	1.0159	30
	90-120	90.56	4.66	5.76	Sand	0.0605	1.1007	0.3637	1.0019	0.0604
8	0-30	60.99	19.79	14.22	S. loam	0.1760	1.1947	26.784	0.9296	30
	30-80	80.83	10.19	8.98	L. sand	0.0986	0.8775	12.603	0.9943	30
	80-110	90.87	4.24	4.89	Sand	0.0514	1.1002	0.0633	0.9898	40
	110- 150	91.21	3.80	3.99	Sand	0.0419	1.1002	1.9633	1.0141	40
S.= S	and	(C.= Clay	,	L. =Loan	n				

 Table 3: Mechanical analyses, clay ratio, EPC_G, St. coefficient (K), thick- of layers (cm) for soil profiles.

٧٤٣٨

Table 3. Cont.

Prof. No.	Depth (cm)	Sand %	Silt %	Clay %	Texture class	Clay ratio	Sepa- ration ratio	EPC	St Coeff.	Thick- ness cm
9	0-30	65.45	13.98	20.57	S.C. loam	0.2589	1.3996	39.142	0.8624	30
	30-60	84.23	4.79	10.09	S.loam	0.1133	1.2001	22.584	0.9504	30
	60-90	90.63	4.81	10.00	L. sand	0.1077	1.1000	1.6104	1.0147	30
	90-120	90.87	4.25	4.82	Sand	0.0513	1.1004	0.3637	1.0021	30
10	0-20	73.78	13.79	22.45	S.C. loam	0.2563	1.4008	36.567	0.7610	20
	20-50	91.47	3.75	15.98	S. loam	0.1678	1.2002	1.9049	1.0159	30
	50-80	82.76	7.24	10.00	L. sand	0.1111	1.1000	8.4999	1.0086	30
	80-120	91.57	4.45	3.98	Sand	0.0414	1.1005	2.2344	1.0133	50
11	0-30	67.36	8.44	24.23	S.C. loam	0.3197	1.3999	71.405	0.6071	30
	30-70	68.55	21.36	10.09	S.loam	0.1122	1.2001	26.537	0.9630	40
	70-110	90.76	4.32	4.92	Sand	0.0517	1.1016	0.3236	0.9989	40
	110- 150	91.57	4.45	3.98	Sand	0.0414	1.1005	1.9633	1.0141	40
12	0-30	65.98	10.16	23.86	S.C. loam	0.3137	1.3998	59.354	0.7267	30
	30-70	68.67	15.35	15.98	S. loam	0.1901	1.2002	20.392	0.9834	40
	70-110	91.68	4.00	4.32	Sand	0.4515	1.0995	1.7875	1.0133	40
13	0-30	91.57	4.45	3.98	Sand	0.0414	1.1005	17.755	0.9727	30
	30-60	90.87	4.25	4.88	Sand	0.0513	1.0983	8.4999	1.0086	30
	60-80	93.56	3.22	3.22	Sand	0.0332	1.0994	1.9565	1.0179	20
	80-120	90.11	4.68	5.21	Sand	0.0549	1.0614	0.7226	1.0035	50
14	0-30	69.10	12.39	18.51	S. loam	0.2271	1.1998	57.139	0.7440	30
	30-60	82.76	7.24	10.00	L. sand	0.1111	1.1000	21.230	0.9568	30
	60-90	42.89	6.22	3.11	Sand	0.0526	1.0996	9.4609	1.0056	30
	90-120	42.89	6.22	40.89	Clay	0.6917	1.4554	5.3785	1.0163	30
15	0-20	90.87	4.25	4.88	Sand	0.5130	1.0983	17.856	0.9296	20
	20-50	91.68	4.00	4.32	Sand	0.0451	1.0995	11.872	0.9971	30
	50-80	90.76	4.32	4.92	Sand	0.0517	1.0995	5.1275	1.0167	30
	80-120	90.63	4.81	4.56	Sand	0.0477	1.1008	0.7226	1.0035	50
16	0-20	92.89	4.00	3.11	Sand	0.0321	1.0996	13.857	0.9589	20
	20-40	93.56	3.22	3.22	Sand	0.0333	1.0994	7.4399	0.9997	20
	40-70	90.71	4.32	4.92	Sand	0.0517	1.0996	4.8822	1.0171	30
	70-110	90.87	4.25	4.88	Sand	0.0513	1.0021	0.4850	1.0021	40
S.= S	and			C.= Cla	V		L. =Loan	1		

Prof.	Depth	pН		O.M	EC (dS/m)	CEC meq/100	Excl	hangeat meq/100	ole cat) g soi	ions I)	ESP
NO.	(CIII)		(70)	(70)	(uS/III)	g soil	Ca++	Mg ⁺⁺	Na⁺	K⁺	
1	0-20	7.79	2.11	2.35	0.92	28.49	16.26	8.08	3.62	0.83	12.89
	20-50	7.79	2.21	1.89	0.75	26.89	14.78	7.09	3.33	0.97	12.40
	50-80	7.75	1.99	0.75	0.47	19.94	13.61	2.73	2.19	0.80	10.79
	80-120	7.55	2.00	0.33	0.63	20.95	10.87	7.25	2.07	0.76	9.90
2	0-20	7.56	3.42	2.22	1.82	20.72	10.75	6.23	2.45	0.64	11.18
	20-60	7.63	2.75	2.01	0.73	23.21	13.10	8.21	3.25	0.67	13.13
	60-90	7.72	1.86	0.98	0.39	9.12	4.65	2.64	1.21	0.62	11.81
	90-120	7.75	1.65	0.39	0.42	7.86	3.98	3.01	0.65	0.31	9.41
3	0-30	7.70	1.75	2.31	0.39	27.20	13.37	9.24	3.82	0.77	14.85
	30-60	7.71	1.45	0.75	0.33	20.95	14.03	4.15	2.01	0.76	9.90
	60-90	7.65	1.32	0.62	0.35	21.63	12.17	6.23	2.55	0.68	10.82
	90-120	7.39	0.98	0.32	0.42	11.22	6.21	2.89	1.32	0.80	11.44
4	0-20	7.57	2.86	2.20	0.86	22.72	12.25	7.23	2.60	0.64	11.18
	20-50	7.67	1.71	1.15	0.39	20.95	14.03	4.15	2.01	0.76	9.90
	50-80	7.66	1.21	0.75	0.31	12.34	6.99	3.40	1.33	0.62	10.72
	80-120	7.56	1.45	0.35	0.35	6.86	3.78	2.48	0.65	0.31	9.41
5	0-30	7.65	1.97	0.62	0.28	6.69	2.98	2.87	0.81	0.02	12.11
	30-70	7.62	1.69	0.15	0.24	5.22	2.11	2.78	0.21	0.02	4.02
	70-110	7.56	1.21	0.11	0.39	5.56	2.22	2.91	0.40	0.03	7.19
6	0-30	7.14	1.94	0.56	3.73	5.69	2.32	2.64	0.52	0.01	9.13
	30-70	7.10	2.12	0.37	4.46	5.50	2.01	2.75	0.64	0.01	11.63
	70-100	7.00	2.22	0.05	7.47	5.22	2.11	2.78	0.21	0.02	4.02
	100- 130	7.14	1.85	0.07	6.65	5.56	2.22	2.91	0.40	0.03	7.19
7	0-30	7.79	0.66	0.57	1.63	5.58	2.40	2.51	0.61	0.56	10.93
	30-60	7.86	0.28	0.35	0.94	5.45	2.23	2.70	0.51	0.31	9.35
	60-90	7.75	0.30	0.25	0.86	5.69	2.32	2.64	0.52	0.01	9.13
	90-120	7.67	0.35	0.11	0.56	5.50	2.01	2.75	0.64	0.01	11.63
8	0-30	7.98	2.28	0.98	0.28	12.34	9.99	4.87	1.86	0.62	10.72
	30-80	7.54	1.28	0.65	0.63	6.86	6.98	4.36	1.21	0.31	9.41
	80-110	7.53	0.48	0.04	0.92	3.21	2.05	2.78	0.32	0.06	6.14
	110- 150	7.65	0.31	0.22	0.88	2.42	2.23	2.70	0.51	0.31	9.35

 Table 4: Some chemical properties, cation exchange capacity, exchangeable cations and ESP for the Soil profile layers at the soil of the west bank of Suez Canal.

٧ ٤ ٤ .

Table	4:	Cont.
-------	----	-------

D (0.00	<u></u>	50	CEC	Exc	hangeal	ole cat	ions	
Prof.	Deptn	Hα		O.M	EC	mea/100	(1	meq/100) a soil)	ESP
INO.	(cm)	•	(%)	(%)	(as/m)	g soil	Ca++	Mg ⁺⁺	Ňa⁺	K⁺	
9	0-30	7.30	1.57	1.23	2.32	19.32	13.87	8.65	2.10	0.70	8.29
	30-60	7.70	0.28	0.89	0.52	8.77	12.84	5.62	2.79	0.52	12.81
	60-90	7.60	0.28	0.23	0.62	7.86	7.35	3.41	1.78	0.32	13.84
	90-120	7.65	0.31	0.11	0.47	3.70	2.26	2.81	0.60	0.03	10.52
10	0-20	7.72	0.94	1.55	0.58	20.82	13.61	8.72	2.89	0.80	10.72
	20-50	7.89	0.57	0.25	0.27	14.67	7.21	6.31	1.78	0.80	10.67
	50-80	7.72	0.46	0.53	0.39	8.26	7.89	2.98	1.78	0.62	13.42
	80-120	7.65	0.57	0.21	0.47	2.60	2.99	2.20	0.40	0.61	7.14
11	0-30	7.62	0.75	1.98	0.57	20.95	16.72	8.25	2.20	0.01	7.87
	30-70	7.64	0.66	0.83	0.54	8.32	8.67	3.64	1.40	0.61	10.51
	70-110	7.71	0.78	0.09	0.40	3.72	2.36	2.65	0.22	0.52	3.85
	110-	7.57	0.85	0.22	0.47	2.18	2.01	1.51	0.43	0.23	10.28
	150										
12	0-30	7.77	1.22	1.65	0.39	20.73	14.53	7.53	3.67	0.80	14.06
	30-70	7.70	2.75	0.72	0.34	13.67	8.21	5.31	1.78	0.62	10.67
	70-110	7.62	2.12	0.21	0.47	13.18	2.01	1.51	0.43	0.23	10.28
13	0-30	7.46	0.48	0.78	0.86	5.60	2.99	2.20	0.40	0.01	7.14
	30-60	7.75	0.51	0.53	0.95	4.18	2.01	1.51	0.43	0.23	10.78
	60-80	7.63	0.56	0.31	0.72	4.81	2.04	2.23	0.50	0.04	10.79
	80-120	7.50	0.49	0.12	0.39	5.75	2.36	2.65	0.22	0.52	3.83
14	0-30	7.38	0.75	1.60	1.06	15.22	8.29	6.62	2.79	0.52	15.31
	30-60	7.40	1.69	0.86	1.46	8.56	3.99	3.56	0.78	0.23	8.16
	60-90	7.38	1.23	0.56	1.51	2.10	2.40	2.20	0.40	0.01	12.90
	90-120	7.75	2.94	0.42	2.20	35.55	19.78	14.34	5.31	0.98	13.09
15	0-20	7.66	0.29	0.98	0.78	5.60	2.99	2.20	0.40	0.01	7.14
	20-50	7.80	0.48	0.63	0.93	5.96	2.87	2.31	0.75	0.03	12.58
	50-80	7.72	0.39	0.41	0.89	5.70	2.26	2.81	0.60	0.05	10.58
	80-120	7.57	0.47	0.12	0.85	5.75	2.45	2.65	0.52	0.05	10.82
16	0-20	7.80	0.65	0.85	0.71	4.57	1.90	2.08	0.51	0.08	11.59
	20-40	7.78	0.37	0.61	0.63	4.81	2.04	2.23	0.50	0.04	10.39
	40-70	7.67	0.45	0.40	0.75	5.75	2.45	2.65	0.60	0.05	10.83
	70-110	7.60	0.41	0.11	0.56	5.96	2.87	2.31	0.75	0.03	12.58

Recent Aeolian sand deposits

The period of land use 20 years:

The soil represented by soil profiles 9, 10, 11, 12 and their data of morphological description, physical and chemical analyses showed in Tables 2, 3, 4. A brief morphological description as colour texture, structure, consistence and morphological features indicated that the effect of land use to improve the surface horizon as Ap than the subsurface layers. The texture changed from sandy clay loam in the surface to sand in the deepest layer. The pH ranged between 7.30 and 7.89. CaCO₃ is low which ranged between 2.75 and 0.28%. O.M ranged between 1.98 and 0.09%. EC ranged between 2.32 and 0.27%. CEC ranged between 20.95 meq/100g soil and decrease with depth to 2.60 meq/100g soil. ESP is less than 15%. These soils are classified as Typic torrifluvents.

Period of land use is 10 years:

The soils represented by soil profiles 8 &14 and morphological description, physical and chemical data analyses are shown in Tables 2, 3, 4. Morphological description as colour, texture, consistence and morphological

۷ ٤ ٤ ١

Abd El-Hady, A.A. and M.F. Abou Youssef

features show low variation between surface layers and lower layers. Texture ranged between sandy loam in the surface layer and sand in the deepest layers. The pH of soil ranged between 7.98 and 7.38. CaCO₃ content is 2.28% in the surface layer and decreased with depth as in profile 14 to 0.75%. O.M is low and decrease with depth. EC is low and varied from layer to another. CEC values are moderately high in surface as 15.22 meq/100g soil and decreased with depth except the deepest layer in profile 14 which is high and could be refered to the high content of clay tafla. ESP is less than 15%. These soils are classified as Typic Torriorthents.

Period of land use is 5 years:

The soils represented by soil profiles 5, 7, 13, 15 and 16 morphological description, physical and chemical analyses showed in Tables 2, 3 & 4. Morphological description revealed there is very low variation between surface and deepest layers. The texture class is sand, the pH ranged between 7.86 and 7.38, CaCO₃ content is low less than 2%, O.M less than 1%, EC is less than 2 dS/m, CEC is less than 6 meq/100g soil and ESP is less than 15%. These soils are classified as Typic Torripsamments.

Period of land use is zero years:-

The soils represented by soil profile 6 and its morphological description, physical and chemical analyses showed in Tables 2, 3 & 4. Morphological description showed that there is no variation between the surface and the deepest layers. The texture class is sand, pH ranged between 7.14 and 7.00, CaCO₃ ranged between 2.22 and 1.85%, O.M less than 1%, E C is moderately and ranged between 7.47 and 3.73 dS/m, CEC is low and less than 5.69 meq/100g soil and ESP is less than 15%. These soils classified as Typic Torripsamments.

Physical and chemical characteristics of the studied soils:

Topography of the area under investigates represented by microcatchment Fig.3 which combined the elevation, longitude and latitude distance of the area under investigation. The physical and chemical properties of the studied soils are shown in Table 3, 4. Data showed that the soil texture are widely varied such as sandy, loamy sand, sandy loam, sandy clay loam, loam, clay loam and clay. The clay content of the soils have significant different from the upslope and the foot slope or the high parts and lower parts, Fig. 5. The spatial pattern suggested that the clay fraction was probably transported down with the rains plash or over land flow. However, there is no significant difference in the sand content under 1.5%, Fig. 4. The relatively high content of organic matter was found in the areas which have land use for long time and the greatest vegetation cover and parent material tends to the alluvial which located on the middle and foot slope. OM is significantly different between the aggregates from the upper and lower deposition sites of the area, Table 5 and Fig. 6. CaCO₃ content of the soils varied from 0.28 to 3.42%. There is no significant difference between the values of CaCO₃ in the high and low parts of the studied soils, Fig. 8. There is no saline and no alkaline in the soils under study.

CEC values are widely varied from 2.18 and 35.55 meq/100 g soil. The high values of CEC are mainly influence by the clay content through the

V £ £ Y

J. Agric. Sci. Mansoura Univ., 26 (11), November, 2001.

layers of the soil profiles. There is a significant difference in the values of CEC between the upper and lower parts of the soils under study, Fig. 7. The bulk density is significantly different between the upper and lower parts of the studied area, Fig. 9, this is could be due to the variation in the soil textures. Stability aggregates Table 5 and Fig 10 are significantly different between the upper and lower parts of soils area which could be due to the topography, parent material, period of land use and clay content.

Statistical analysis for soil erosion:

Data presented in Table 5 showed that the values of EPC_G in the studied soils ranged between 0.06 and 96.29 with an average of 17.48. The data reveal that the sequence distribution of EPC_G values is high in the surface layers and decreases with depth and increases by increasing of organic matter and clay content in the soils. Furthermore, the EPC_G values showed different significant values between the upper and lower sites, Table 5 and Fig 11. The highest EPC_G values was found in areas with greatest vegetation and relatively high content of organic matter, located in the middle and footslope. The soils which have high CEC values have clay content and high stability aggregate; these conditions increase the negative effect of wind erosion and increase the effects of environmental loads caused by reuse of farmyard manure, organic manure, residual of plant and improper soil use etc.

The EPC_G values and the soil load are higher than in the above mentioned soil types. In all areas where the erosion effects have been only slight or are absent, soil use (e.g. cultivation) has created more favourable conditions, which may also occur in sandy or sandy loam, or loamy sand. The EPC_G values are ranged between 9 and 57. There was high significant correlation coefficients between EPC_G values and sand (r= -0.62^{**}) silt (r= 0.58^{**}), clay % (r= 0.69^{**}), O.M (r= 0.86^{**}), CaCO₃ % (r=0.39^{**}) CEC (r= 0.64^{**}), clay ratio (r= 0.66^{**}), exchangeable Ca (r=0.72^{**}), exchangeable Mg (r= 0.58^{**}), exchangeable Na (r=0.65^{**}) exchangeable K (r=0.45^{**}), stability aggregate (r=0.70^{**}), and bulk density (r= -0.66^{**}), respectively.

Fig3,4,5

V £ £ £

fig6,7,8

V £ £ 0

fig9,10,11

٧ £ £ ٦

The data showed that the variation in the EPC_G values of the studied soil profiles are due to variations in organic matter, soil texture, bulk density and aggregates.

There is no significant correlation between EPC_G values and pH, EC, and C/N ratio in soils. Path analysis, a statistical technique differentiates between correlation and causation, was used to describe EPC_G values in soil. Path analysis model has been chosen to evaluate the effect of soil properties on EPC_G values by soil samples taken from EI-Ferdain area.

Path analysis values of soil from EI-Ferdain area are listed in Table 6. Simple correlation coefficients (r) values between pH, CaCO₃, O.M, EC, sand, silt, clay, CEC, ESP, exch. Ca, exch. Mg, exch. Na, exch. K, stability of aggregate, bulk density, clay ratio and dispersion ratio and EPC_G values are listed for comparison with path analysis values.

501	of the west	Dalik Of Sue	z Ganai.		
Prof.	Depth	Stability	Bulk density		EPC _G
No.	(cm)	aggregate	(g/cm ³)	EPCG	Total
1	0-20	31.9838	1.186	51.33	151.91
	20-50	31.1045	1.226	68.64	
	50-80	23.9781	1.365	27.51	
	80-120	24.7552	1.390	4.43	
2	0-20	28.6013	1.149	24.71	152.42
	20-60	31.3950	1.215	96.29	
	60-90	14.6242	1.421	26.78	
	90-120	12.5767	1.481	4.64	
3	0-30	33.1982	1.179	76.91	108.04
	30-60	24.9775	1.357	16.50	
	60-90	27.2253	1.349	11.51	
	90-120	16.5189	1.455	3.12	
4	0-20	28.6611	1.223	50.65	107.25
	20-50	25.1891	1.327	35.12	
	50-80	17.5278	1.416	16.50	
	80-120	12.5556	1.484	4.98	
5	0-30	10.2092	1.483	11.51	12.89
	30-70	9.5244	1.522	0.90	
	70-110	8.6946	1.532	0.48	
6	0-30	9.6324	1.492	9.46	15.24
	30-70	8.0328	1.518	5.57	
	70-100	8.6629	1.536	0.07	
	100-130	8.9823	1.532	0.14	
7	0-30	7.6844	1.506	9.79	15.79
	30-60	9.1306	1.511	3.74	
	60-90	10.0134	1.511	1.90	
	90-120	9.5033	1.525	0.36	
8	0-30	17.6495	1.398	26.78	41.40
	30-80	12.7144	1.461	12.60	
	80-110	8.6758	1.537	0.06	
	110-150	7.9534	1.529	1.96	

Table 5: Stability aggregate, bulk density (BD) and environmental protection capacity (EPC_G) values of soil profile layers at the soil of the west bank of Suez Canal.

V £ £ V

Abd El-Hady, A.A. and M.F. Abou Youssef

Table 5: Cont

Prof. No.	Depth (cm)	Stability Aggregate	Bulk density (g/cm ³)	EPC _G	EPC _G Total
9	0-30	23.5508	1.334	39.14	63.67
	30-60	13.8498	1.434	22.58	
	60-90	13.4188	1.486	1.61	
	90-120	8.7038	1.532	0.36	
10	0-20	25.4281	1.295	36.56	49.18
	20-50	18.8622	1.442	1.90	
	50-80	13.5775	1.463	8.49	
	80-120	7.9390	1.530	2.23	
11	0-30	27.2728	1.250	71.40	100.21
	30-70	13.8181	1.439	26.53	
	70-110	8.7295	1.533	0.32	
	110-150	7.9443	1.529	1.96	
12	0-30	26.7620	1.278	59.35	99.27
	30-70	19.1109	1.406	20.39	
	70-110	8.2479	1.528	1.78	
13	0-30	8.2407	1.486	17.75	
	30-60	8.9260	1.499	8.49	11.16
	60-80	7.3015	1.527	1.95	
	80-120	9.0088	1.528	0.72	
14	0-30	21.8751	1.320	57.13	93.19
	30-60	13.7522	1.437	21.23	
	60-90	7.3338	1.509	9.46	
	90-120	41.5827	1.252	5.37	
15	0-20	9.1642	1.465	17.85	85.56
	20-50	8.4703	1.495	11.87	
	50-80	8.8988	1.508	5.12	
	80-120	8.4184	1.533	0.72	
16	0-20	7.4874	1.487	13.85	26.64
	20-40	7.4603	1.505	7.43	
	40-70	8.8936	1.509	4.88	
	70-110	8.7037	1.532	0.48	

Low uncorrected residual (U) values and significant coefficient of determination (R^2) values indicate that the Path analysis model explains most of the variation in EPC_G values by soil properties. Partitioning showed strong (p<0.01) OM, clay and bulk density direct effect on EPC_G values.

In general, direct effect of soil properties on EPC_G values are OM > bulk density > clay > dispersion ratio > stability aggregates > CaCO₃. Path analysis direct effect of OM (0.45), bulk density (0.35) Fig 12, clay (0.23), desperation ratio (-0.15), stability aggregates (0.14), and CaCO₃ (-0.13). This means that direct effects are higher than indirect ones for EPC_G values. Also, results showed that the partition of direct and indirect effects may allow insight into mechanisms of EPC_G values. Path analysis could be a valuable tool to record relationships between soil properties and other measured chemical parameters.

Soil properties	Direct effect	r
Sand	-0.05	-0.97
Silt	0.09	0.94
Clay	0.23	0.91
EC	-0.08	-0.28
O.C	0.43	0.84
CaCO ₃	-0.13	0.54
CEC	-0.01	0.93
ESP	0.03	0.51
Clay %	0.05	0.85
Dispersion	-0.15	-0.08
Exch. Ca	0.07	0.33
Exch. Mg	0.01	0.74
Exch. Na	-0.07	0.78
Exch. K	-0.01	0.58
Stability aggregate	0.14	0.79
Bulk density	-0.25	-0.55

Table 6: Path analysis of direct effect of soil properties on EPC₆ values for the soil investigation.

REFERENCES

- Abu-Al-Izz M.S. (1971) "Land forms of Egypt". The American Univ. in Cairo, U.A.R.
- Ball, J. (1939). Contribution to the geography of Egypt. Survey Dept., Publications, Cairo, Egypt.
- Anderson, R.S. (1987) A theoretical model for impact ripples. Sedimentology, 34:943.
- Bagnold, R.A. (1973). The nature of saltation and "bed-load" transport in water. Proc.R. Soc. Londo, Ser., A 332:473.
- Bayoumy, M.R. (1971). Pedological studies in agricultural expansion areas west of the Suez Canal U.A.R. M.Sc thesis Fac. Agric., Cairo Univ. Egypt.
- El-Fayomy, L.F. (1968). Geology of ground water supply in the region of the Nile Delta. Ph. D. Thesis, Fac. Sci. Cairo.
- FAO (1990). Guidelines for soil profiles description. Soil Resources development and conservation Service, land and water Development Division, FAO Rome 1977.
- Iversen, J.D.; R. Greeley; J.R. Marshal and J.B. Pollack (1987). Aeolian salutation threshold: the effect of density ratio. Sedimentology, 34.699.
- Jackson, M.L. (1979). "Soil Chemical Analysis". Prentice-Hall Inc-Engiewood cliffs, N.S.
- Klute, A. (Ed) (1986). "Methods of Soil Analysis". Part I. Physical and mineralogical Methods" 2nd ed., Agron. Madison, Wisconsin, U.S.A.

- Mirzamosta, N.L.; L.J. Hagen; L.R.Stone and E.L. Skielmore (1998). "Soil aggregate and texture effects on suspension components from wind erosion" Soil Sci. Soc. Of Amer. J., 62: 1351-1361.
- Oldeman, L.R. (1991). "Global extent of soil degradation. P.19-36. In Biannual report Int. Soil Reference and information Center, Wageningen, the Netherlands.
- Page, A.L.; E.H. Millet and D.R. Keeney (1982). "Methods of soil analysis". Part 2. Chemical and microbiological properties". 2nd ed Agron. Madison, Wisconsin, USA.
- Piper, C.S. (1950). "Soil land plant analysis. A monograph from the Wail Agric. Research Inst. University of Adelaid, Australia.
- Richards, L.T. (E.D) (1954). "Diagnosis and Improvement of saline and Alkali Soil" U.S. Dept. Agric., Handbook, 60.
- Said, R. (1962). The Geology of Egypt "Elsevier Publishing Company. Geoist., 25:581
- Shata, A.A. (1978). "Genesis formation and classification of the soils south Ismaeliya Canal between Belbeis and Ismaliya including Wadi El-Tumeilat. M.Sc. Thesis, Fac. Agric., Zagazig. Univ., Egypt.
- Shata, A.A. (1984). Chemical and mineralogical aspects as a criterion of soil genesis and formation of the region east of Nile Delta. Ph. D. Thesis, Fac. Agric., Zagazig, Univ., Egypt.
- Soil Survey Staff (1996). Key to Soil Taxonomy. SCS, USA. Hargitai (1982).
- Unger, J.E. and Haff, P.K. (1987) Steady state saltation in air. Sedimentology, 34:289.
- Wassif., M.M; M.Y. Draz and M.A. Katary (2000). Wind tannel studies on wind Erosion and Drift of same desert soil. Egypt, J. soil Sci., 40(3): 317-328.
- Werner, B.T. (1988). A steady state model of wined blown sand transport. Blue and white Reports. Office of naval technology. Naval Weapons Canter. China lake, California.
- Wright, C.H. (1939). "Soil analysis". Thomas and Co. London.

تأثير خواص التربة على إنجراف الأراضى وعلاقتها بمعامل EPC_G على عبد الحميد عبد الهادى* محمد فتحى أبو يوسف** * قسم الأراضى كليه الزراعة - جامعة القاهرة- جيزة مصر. ** قسم صيانة الأراضى - مركز بحوث الصحراء - المطرية مصر.

٧٤٥.

أخذ ١٦ قطاع أرضى تمثل أراضى المنطقة بالساحل الغربي لقناة السويس تحت الدراسة على أساس اختلاف الترسيبات وفترة الاستخدام كأراضي ترسيبات نهرية ريحية وأراضي الترسيبات الرملية الحديثة. تقسم الأراضي إلى:

Typic Torrifluvents, Typic Torriorthents, Typic Torripsamments

من ألخواص الطبيعية والكيماوية للأراضي فأن توزيع الطين يكون مختّلف بدرجة معنوية بين الأجزاء المرتفعة والمنخفضة بينما لا يوجد اختلاف معنوى في توزيع الرمل. توزيع المادة العضوية يتاثر بالطبو غرافية واستخدام الأراضي والغطاء النباتي. لا يوجد اختلاف معنوى في توزيع كربونات الكالسيوم. السعة التبادلية الكاتيونية تختلف من جزء إلى آخرى تبعاً لتوزيع الطين. قيم الكثافة الظاهرية تختلف تبعا لإختلاف القوام. ثبات التجمعات تختلف قيمها بين الاجزاء المرتفعة والمنخفضة وهذا يرجع إلى الطبوغرافية ومادة الأصل وفترة الاستخدام والمحتوى الطيني. من الدراسة السابقة يتضر عند من تربع كربونات الكالسيوم. الريحي مع زيادة معامل القدرة التحملية الطيني. من الدراسة السابقة يتضح انها تقلل من تأثير الانجراف الريحي مع زيادة معامل القدرة التحملية الظروف البيئية (EPCG).

ير تبط معامل القدرة التحملية للظروف البيئية (EPCg) كمعامل لدراسة الانجراف الريحي ارتباطاً معنوياً عالى المعنوية مع الرمل والسلت والطين والمادة العضوية وكربونات الكالسيوم والسعة التبادلية الكاتيونية والكاتيونات المتبادلة (كا++، مع++، ص+، بو+) والتجمعات الثابتة والكثافة الظاهرية بينما لا يوجد ارتباط معنوى مع الملوحة ورقم C/N, pH في الأراضي.

يتضبح من دراسة معامل Path analysis أن عدداً من خواص الأراضى مثل المادة العضوية والكثافة الظاهرية والطين والتجمعات الثابتة وكربونات الكالسيوم لها تأثير وارتباط مباشر مع EPC_G .

Parent	Land	Soil	Prof.	Horizon	Depth	Col	our	Texture	Chruchura	C	Consiste	nce	Bound-
Materials	Use	Classification	No.	Symbol	(cm)	Dry	Moist	Class	Structure	Dry	Moist	Wet	ary
Alluvial widborn	Cultivated with	Typic	1	Ар	0-20	10YR4/2	10YR3/2	CL	Mmsb	Н	F	S&P	GD
Deposits	Crops 40 years	Torrifluvents		C1	20-50	10YR5/2	10YR4/2	CL	Slsb	н	F	S&P	Cg
				C2	50-80	10YR5/3	10YR3/3	SCL	Mlsb	Mh	Mf	Ms&p	Cs
				C3	80-120	10YR5/3	10YR3/3	L.	Mssb	Mh	Mf	Ms&p	
Alluvial windborn	Cultivated with	Tyipc	2	Ар	0-20	10YR4/2	10YR3/2	SCL	Mmsb	Mh	Mf	Ms&p	GD
Deposits	Crops 40 years	Torrifluvents		C1	20-60	10YR4/2	10YR3/2	SCL	Mcsb	Mh	Mf	Ms&p	Cg
				C2	60-90	10YR5/3	10YR3/3	SL	Mmsb	Sh	Fr.	Sds&p	Сs
				C3	90-120	10YR5/3	10YR3/3	LS	Smsb	Vsh	Sfr.	Vss&p	
Alluvial windborn	Cultivated with	Tyipc	3	Ар	0-30	10YR4/2	10YR3/2	VCL	Mcsb	Η.	f.	S&p	Ci
Deposits	Crops 40 years	Torrifluvents		C1	30-60	10YR5/3	10YR3/3	L	Mmsb	Mh.	Mf.	Ms&p	GD
-				C2	60-90	10YR5/3	10YR33	SCL	Mmsb	Mh.	Mf.	Ms&p	Cg
				C3	90-120	10YR5/3	10YR3/3	SL	Smsb	Sh.	Fr.	Ss&p	CS
Alluvial windborn	Cultivated with	Tyipc	4	Ар	0-20	10YR4/3	10YR3/3	SCL	Mcsb	Mh.	Mf.	Ms&p	CI
Deposits	Crops 40 years	Torrifluvents		C1	20-50	10YR4/3	10YR3/3	L	Mmsb	Mh.	Fr.	Ss&p	CW
				C2	50-80	10YR4/3	10YR3/3	SL	Mssb	Sh.	Fr.	Vaa&p	GD
				C3	80-120	10YR5/3.	10YR3/3	LS	Smsb	Vsh.	Vsfr.	Vss&p	CW
Recent Aeolian	Cultivated with	Tyipc	9	Ар	0-30	10YR5/4	10YR4/4	SCL	Mmsb	Mh	Mf.	Ms&p	CS
Sand	Vegetables	Torrifluvents		C1	30-60	10YR6/4	10YR5/4	SL	Mssb	Sh	Sfr.	Vss&n	Gd
Deposits	20 years			C2	60-90	10YR5/4	10YR4/4	LS	Wssb	Vsh	Vsfr.	Non	Cw
				C3	90-120	10YR6/4	10YR5/4	S	Sg	Ι.	Ι.	Non	Cs
Recent Aeolian	Cultivated with	Tyipc	10	Ар	0-30	10YR5/3	10YR2/3	SCL	Mmsb	Mh.	Mf.	Ss&p	Cw
Sand	Vegetables	Torrifluvents		C1	30-70	10YR6/4	10YR5/4	SL	Mssb.	Ser.	Sfr.	Non	Gs.
Deposits	20 years			C2	50-80	10YR4/3	10YR5/2	LS.	Wsg	Vsh	Vsfr.	Non	Cs.
				C3	80-120	10YR6/4	10YR5/3	S.	Sg	L.	L.	Non	
Recent Aeolian	Cultivated with	Tyipc	11	Ар	0-30	10YR5/3	10YR3/3	SCL.	Mmsb	Mh.	Mf.	Ss&p	Cw.
Sand	Vegetables	Torrifluvents		C1	30-70	10YR6/4	10YR5/4	SL.	Wsg	Sh.	Sfr	Non	Gs.
Deposits 20 vears	20 years			C2	70-110	10YR6/3	10YR4/3	S.	Sg	L.	L.	Non	CI.
,				C3	110-150	10YR6/3	10YR4/3	S.	Mmsb	L.	L.	Non	
Recent Aeolian	Cultivated with	Tyipc	12	Ар	0-30	10YR5/3	10YR4/3	SCL	Wsg	Mh.	Mf.	Ss&p	GD.
Sand	Crops 20 years	Torrifluvents		C1	30-70	10YR6/4	10YR5/4	SL.	Sg	Sh.	Sfr.	Non	CS.
Deposits 20 years				C2	70-110	10YR6/3	10YR5/2	S.	Msg	L.	L.	Non	

Table (2): Micromorphological description of soil profiles of the investigated area.

Recent Aeolian	Cultivated with	Typic	8	Ар	0-30	10YR6/4	10YR5/4	SL.	Wsg	Sh.	Sfr.	Non	GS.
				Та	ble (2)	: Cont.							
Parent	Land	Soil	Prof.	Horizon	Depth	Co	our	Texture	Structure		Sss		Bound-
Materials	Use	Classification	No.	Symbol	(cm)	Dry	Moist	Class		Dry	Moist	Wet	ary
Sand	Vegetables	Torriorthents		C1	30-80	10YR5/4	10YR3/3	LS.	Sg	Vsh.	Vsfr.	Non	Cİ
Deposits 10 years	10 years			C2	80-110	10YR6/4	10YR5/4	S.	Sğ	L.	L.	Non	CS.
	-			C3	110-150	10YR5/4	10YR3/3	S.	Wssb	L.	L.	Non	
Recent Aeolian	Cultivated with	Tyipc	5	Ар	0-30	10YR7/4	10YR6/4	S.	Vwssb	Sh.	Sfr.	Vss&p	GD.
Sand	Fruties 5 years	Torripsamments		C1	30-70	10YR7/4	10YR6/4	S.	Sg	Vsh.	L.	Non	CS.
Deposits 5 years				C2	70-110	10YR7/4	10YR6/4	S.	Sg	L.	L.	Non	
Recent Aeolian	Borren	Tyipc	6	C1	0-30	10YR7/4	10YR6/4	S.	Sg	L.	L.	Non	CI
Sand		Torripsamments		C2	30-70	10YR5/2	10YR3/2	S.	Sg	L.	L.	Non	Cg.
Deposits.				C3	70-100	10YR6/3	10YR5/3	S.	Sg	L.	L.	Non	CS.
				C4	100-130	10YR6/3	10YR5/3	S.	Sg	L.	L.	Non	
Recent Aeolian	Cultivated with	Tyipc	7	Ар	0-30	10YR6/3	10YR4/3	S.	Wg	Sh.	Sfr.	Non	GD
Sand	Vegetables	Torripsamments		C1	30-60	10YR	10YR	S.	Wssb	Vsh.	Vsfr.	Non	CS.
Deposits.	5 years			C2	60-90	10YR	10YR	S.	Vwssb	Vsh.	Vstr.	Non	CW.
				03	90-120	10YR	10YR	S.	Sg.	L.	L.	Non	
Recent Aeolian	Cultivated with	_ I yipc	13	Ар	0-30	10YR	10YR	S.	Wsg.	Sh.	Sfr.	Non	CS.
Sand	vegetbles	Torripsamments			30-60	10YR	10YR	5.	vwsg.	VSN	VSIF.	Non	
Deposits.	5 years			62	60-80	10YR	10YR	5.	VWSSD.	vsn	VSIF	Non	US.
Descent Assilian	Outline te durith	Tráca	4.4	03	80-120	10YR	10YR	<u> </u>	Sg.	L.	L.	Non	0.14/
Recent Aeolian	Cultivated with	I yipc	14	Ap	0-30	10YR	10YR	SL	IVISG.	Sn.	SIF	Non	GW.
Deposito	Crops to years	romonnents.			30-60			LS.	wsg Weeb	vsn	VSII.	Non	GD.
Deposits.					00-90		101R	3. C	Sceb	L. Vh	L. Vf	Ve&vo	03.
Pocont Apolian	Cultivated with	Tvinc	15	<u> </u>	0.20	10VP	10TR	0. 9	Weg	Sh	Sfr	Non	CL
Sand	Vogotablos	Torrincommonte	15	Αp C1	20.50	1070	101K	3. 9	Weeb	Vch	Vofr	Non	
Deposits	5 vears	rompsamments			50-80	10VR	10VR	S.	Vweeb	1	1	Non	CS.
Depusits.	J years			C3	80-120	10YR	10YR	5. S	Sa	l i		Non	00.
Recent Aeolian	Cultivated with	Tvinc	16	An	0-20	10YR	10YR	S.	Vwsa	Sh	Sfr	Non	CS
Sand	Vegetables	Torrinsamments	10	C1	20-40	10YR	10YR	S.	Vwssh	Vsh	Vsfr	Non	CI
Deposits.	5 vears	rompourmento.		Č2	40-70	10YR	10YR	S.	Sa.	L	L.	Non	cs
	- ,			Č3	70-110	10YR	10YR	S.	Sq.	Ē	L.	Non	

J. Agric. Sci. Mansoura Univ., 26 (11), November, 2001.

J. Agric. Sci. Mansoura Univ., 26 (11): 7431 - 7451, 2001.