Journal of Soil Sciences and Agricultural Engineering

Journal homepage & Available online at: www.jssae.journals.ekb.eg

GIS Modeling Incorporated with Python Programming Language to Determinate Land Productivity Index

Mustafa, A. A.*

Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag, Egypt

Cross Mark

ABSTRACT

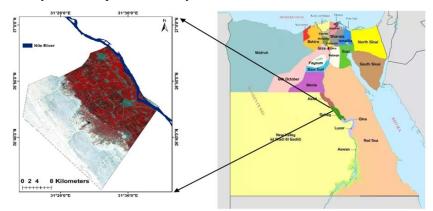
In order to assess the soil productivity in the Northern section of Sohag Governorate, Egypt, a thorough soil survey conducted. For this, Thirty-four profiles, including old-cultivated, new-cultivated, and barren soils, represented three different agricultural land uses. The profiles selected, and samples taken from each horizon and examined for their physical and chemical characteristics. The Land Productivity Index (LPI) utilized to assess soil productivity. The index individually calculated by each of the earlier studies. However, this procedure takes a long time and is challenging, especially when there are many soil samples. After that, using a weighted overlay tool, create a final map of the productivity index overlay. In order to automate soil productivity, a Python program developed and used in conjunction with the Designed Land Productivity Spatial Model (DLPSM). Such a programme could managed, improved, and transferred by many users and authorities in the current Era of distinctive advancement in information technology.

Keywords: Land Productivity Index (LPI), python program, Designed Land productivity spatial model (DLPSM).

INTRODUCTION

Soil is the most valuable natural resource for any nation and the awareness about soil resource properties is a precondition for sustainable agriculture. Over 75% of the Earth's land area is already degraded, and over 90% could become degraded by 2050 (Charlet et al., 2018). While human demands on land are unbounded, the resource's constraints are finite. Declining agricultural yield, deterioration of the quality and quantity of the land, and competition for available land are signs of increased demand for or pressure on the land resource. While agriculture continues to release significant amounts of greenhouse gases, the effects of climate change on yields and rural livelihoods are growing (FAO, 2018). The majority of Egypt's population lives inside the banks of the Nile River, in an area of only 4% of the country's total size, where the majority of the country's fertile lands are located (CAPMAS, 2009). Egypt is a populous nation with a total area of roughly 1 million km2. Additionally, irrigated fields account for almost 95% of its agricultural output. With the Delta making up 63% of Egypt's fertile area, the Nile Delta and Nile Valley are the primary contributors to food production, trade, and the national economy (Shehata, 2014). In terms of agricultural operations, understanding and precision are two phrases that refer to the capacity of the land for productivity or the quality of the land. It could be characterized as a gauge of a land's capacity to carry out particular tasks (Devi and Kumar, 2008). Another definition given by Dengiz et al. (2009) is "the condition and capacity of land, including its soil, climate, topography, and biological properties, for purpose of production, conservation, and environmental management". Either a direct or in direct approach can be used to assess the land's

productive capability. Direct evaluation can done through some studies in the field, greenhouse, or laboratory under specific climatic and regulated settings. Indirect evaluations involve creating and using several models of variable complexity in an effort to estimate land productivity (Dengiz, 2007). The main objective of this study is to show case a new Python program that automates soil productivity based on the methodology introduced by Riquier *et al.* (1970). The program, developed by Mustafa *et al.*, is readily available on the website (http://soilhealth .pythonany where.com). Furthermore, the study employs GIS spatial analyst techniques to apply the Designed Land Productivity Spatial Model (DLPSM) in assessing the factors influencing land productivity.


MATERIALS AND METHODS

Site Description and Location

Sohag is one of the Governorates of Upper Egypt and bounded the northern edge of Qena Governorate and the southern edge of Assiut Governorate. It is located between latitudes 26°07′ N and 26°57′ N and longitudes 31°20′ E to 32°14′ E. The study area (Figure 1) is located at the Northen part of Sohag Governorate. The area covers a total area of approximately 715.15 km² and is generally characterized by hot summer and mild winter with low rainfall and high evaporation. There were three land uses in the area under study viz. old cultivated soils, new reclaimed soils and barren soils. **Soil Sampling and laboratory analysis**

To obtain more precise knowledge of the soil patterns and landscape characteristics, ground truth studies were carried out. Important characteristics were examined during a field survey using the FAO (2006) approach. At typical areas, soil profiles were examined and ground truth observation sites were located using a global positioning

system (Fig. 2). The chosen locations exhibit a variety of soil types, including newly reclaimed soils, old, farmed soils, and desert terrain. Horizontally oriented soil samples were gathered, air-dried, crushed, sieved, and stored for use in analyzing the physical and chemical characteristics of the soil using the certified analytical techniques described by the USDA (2004). The analyzed parameters are clay (%), sand (%), silt (%), exchangeable sodium percentage (ESP %), organic carbon (OC %), electrical conductivity (EC dS/m), soil reaction (pH), cation exchange capacity (CEC cmol(p+)/kg) and calcium carbonate total content (%).

31°30'0"E V..0.0.L Z A 1..0.0 26°40'0"N 024 8 Kilometers 31°30'0"E

Fig. 2. Location of the selected soil profiles

Productivity classification approach:

Applying the mathematical model developed by Riquier et al. (1970), the productivity potential of the soil

Table 2. Definition	of soil	moisture and	organic matter

Figure 1. Location of the study area.

profiles was evaluated. The system suggested nine elements into account for calculation the productivity index. These elements are the following: soluble salts (S), soluble organic matter (O), CEC (A), drainage (D), effective depth (P), texture/structure (T), texture/structure (T), and mineral reserves (M). Each element is given a score between 0 and 100, and the resulting productivity index is then compared to a scale that assigns the soil to one of five productivity classes (Table 1).

Table 1. Land productivity classes

Land productivity index	Definition	Symbol
65-100	Excellent	Ι
35-64	Good	II
20-34	Average	III
8-19	Poor	IV
0-7	Extremely poor or nill	V

The diagnostic factors of each thematic layer were assigned values of factor rating identified in Tables 2 - 6.

	Soil Moisture Content (H)		Organic matter in A1 horizon (O)
H1	Rooting zone below wilting point all the year round	01	Very little organic matter , less than 1%
H2	Rooting zone below wilting point for 9 to 11 months of the year H2a:11, H2b:10, H2c:9 months.	O2	Little organic matter, 1-2%
H3	Rooting zone below wilting point for 6 to 8 months of the year H3a:8, H3b:7, H3c:6 months.	03	Average organic matter content,2-5%
H4	Rooting zone below wilting point for 3 to 5 months of the year H4a:5, H4b:4, H4c:3 months.	O4	High organic matter content, over 5%
H5	Rooting zone above wilting point and below field capacity for most of the year	05	Very high content but C/N over 25

Soil Depth (P)					
P1	Rock outcrops with no soil cover or very shallow cover				
P2	Very shallow soil, < 30 cm				
P3	Shallow soil, 30- 60 cm				
P4	Fairly deep soil, 60-90 cm				
P5	Deep soil 90-120 cm				
P6	Very deep soil >120 cm				

Table 4. Definition of soil drainage and reserves Weatherable mineral

Table 4. Definition of son of anage and reserves weatherable numeral									
	Drainage (D)			rves of Weatherable mineral in B horizon (M)					
D1a	Marked waterlogging, water table almost reaches the surf	ace all year round	M1	Reserves very low to nil					
D1b	Soil flooded for 2 to 4 months of year	-	M2	Reserve fair					
D2a	Moderate waterlogging, water table being sufficiently surface to harm deep rooting plants	y close to the	M2a	Minerals derives from sands, sandy material or ironstone					
D2b	Total waterlogging of profile for 8 days to 2 months		M2b	Minerals derives from acid rock					
D3a	Good drainage, water table sufficiently low not to imped	le crop growing	M2c	Minerals derives from basic or calcareous rocks					
D3b	Waterlogging for brief period (flooding), less than 8	days each time	M3	Reserve large					
		•	M3a	Sands, sandy material or ironstone					
D4	Well drained soil, deep water table; no waterlogging	of soil profile	M3b	Acid rock					
		•	M3c	Basic or calcareous rocks					
Table 5. Definition of soil texture and structure of root zone and base saturation and pH									
	Texture and structure of root Zone (T)		Base sat	turation and pH (1:1) of A Horizon (N)					
T1	Pebbly, stony or gravelly soil	N1		BS:<15% pH:3.5-4.5					
T1a	Pebbly, stony or gravelly >60% by weight	N2		BS:15 - 35% pH:4.5-5.0					
T1b	Pebbly, stony or gravelly from 40-60%	N3		BS:35 - 50% pH:5.0-6.0					
T1c	Pebbly, stony or gravelly from 20-40%	N4		BS: 50 - 75% pH: 6.0- 7.0					
T2	Extremely coarse textured soil	N5		BS:>75% pH:7.0-8.5					
T2a	Pure sand of particle structure	N6		Soil excessive calcareous >30%					

12a	I ule salu of particle structure	INU	Soli excessive calcaleous >30%
T2b	Extremely coarse textured soil (>45% coarse sand)		Soluble Salt content (S)
T2c	Soil with non - decomposed raw humus (>30% organic matter) and fibrous structure	S 1	< 0.2%
T3	Dispersed clay of unstable structure (ESP>15%)	S2	0.2 - 0.4%
T4	Light textured soil, FS, LS, SL, CS and Si	S 3	0.4 -0.6%
T4a	Unstable structure	S4	0.6 - 0.8%
T4b	Stable structure	S5	0.8 - 1.0%
T5	Heavy – textured soil: C or SiC	S6	>1.0%
T5a	Massive to large prismatic structure	S 7	Total soluble salt (including Na ₂ CO ₃) 0.1 - 0.3%
T5b	Angular to crumb structure or massive but highly porous	S 8	0.3 - 0.6%
T6	Medium – heavy soil: heavy SL,SC,CL,SiCL,Si	S 9	>0.6%
Тба	Massive to large prismatic structure		Mineral Exchange Capacity (A)
T6b	Angular to crumb structure (massive but porous)	A0	Exchangeable capacity of clay <5 cmol+ kg ⁻¹
T7	Soil of average, balanced texture: L,SiL and SCL	A1	Exchangeable capacity of clay <20 cmol+ kg ⁻¹
	<i>y</i> ,	A2	Exchangeable capacity of clay 20 - 40 cmol+ kg ⁻¹
		A3	Exchangeable capacity of clay > 40 cmol+ kg ⁻¹

Table 6. Rating of different soil and land characteristics

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,H3 40 80 90 100	Pasture 60 100 90 80 20 60 80 90 100 100 100	Tree crop 5 10 40 100 5 20 60 80 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80 90	100 90 80 20 60 80 90 100	$ \begin{array}{r} 10 \\ 40 \\ 100 \\ 5 \\ 5 \\ 20 \\ 60 \\ 80 \\ 80 \\ \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	90 80 20 60 80 90 100	40 100 5 5 20 60 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		80 20 60 80 90 100	100 5 5 20 60 80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	20 60 80 90 100	5 5 20 60 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60 80 90 100	20 60 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60 80 90 100	20 60 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		80 90 100	20 60 80
H4b 90 80 90 P4 80 H4c 100 90 100 P5 100 H5 100 100 100 P6 100		90 100	60 80
H4c 100 90 100 P5 100 H5 100 100 100 P6 100 N T T T T		100	80
<u>H5 100 100 100 P6 100</u> N T			
N T		100	100
N1 40 60 80 T1a 10		30	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50	30 80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		90	100
N4 80 90 100 H3,H4,H5 H3	H1,H2		100
N5 100 100 100 T2a 10 10	10		
N6 80 90 100 T2b 30 20	10		
$D_{3,D4}$ $D_{1,D2}$ D_{12C} D_{30} D_{30}	30		
N1 85 70 T3 30 20	10	The same	The same
N2 90 80 T4a 40 30	30	rating as for	rating as for
N3 100 90 T4b 50 50	60	pasture	crops
N4 100 100 T5a 50 60	20		
<u>N5</u> 70 70 T5b 80 80	60		
A T6a 80 80	60		
A0 85 T6b 90 90	90		
A1 90 T7 100 100	100		
A2 95 S T1,T2,T4 T5	,T6,T7		
<u>A3 100 S1 100</u> <u>M H1 H2 H2 H4 H5 S2 70</u>	100		
M H1,H2,H3 H4,H5 S2 70	90		
M18585S350M2a8590S425	80 40		
M2a8590S425M2b9095S515	40 25		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15		
M22 95 100 50 5 M3a 90 95 S7 60	90		
M3a 90 95 37 00 M3b 95 100 S8 15	60		
M3c 100 100 S9 5	15		

*Rating for H2a is 10; when the soil is irrigated, the rating becomes 100

Mustafa, A. A.

In general, the LPI model calculation involves three main steps. The stages that follow (figure 3) describe how the model works.

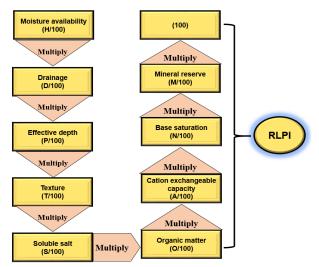


Fig. 3. Steps for calculating RLPI model.

1-The soil parameters, which are all employed as diagnostic criteria, include effective moisture availability (H), drainage (D), effective depth (P), texture/structure (T), soluble salt (S), organic matter (O), cation exchange capacity (A), base saturation (N), and mineral reserve in B horizon (M).

- 2-The soil is assessed using a calculated mean weighted mean value for each identified soil attribute, which is calculated by multiplying each horizon's parameter value by its thickness, then dividing that result by the profile depth as a whole.
- 3- The RLPI was calculated according to the following equation:

 $RLPI = \frac{H}{100} \times \frac{D}{100} \times \frac{P}{100} \times \frac{T}{100} \times \frac{S}{100} \times \frac{O}{100} \times \frac{A}{100} \times \frac{N}{100} \times \frac{M}{100} \times 100$ Automation of RLPI model:

The Python software used in this research can save, retrieve, display, manage, and analyse various types of data. The python programme was used to code the soil factors, which included effective moisture availability (H), drainage (D), effective depth (P), texture/structure (T), soluble salt (S), organic matter (O), cation exchange capacity (A), base saturation (N), and mineral reserve in B horizon (M). Then, using the software created by Mustafa *et al.* (2022), Riquier *et al.*'s (1970) mathematical models were applied to all of these elements in order to generate the RLPI.

Designed Land Productivity spatial model (DLPSM):

Utilising the inverse distance weighted technique (IDW) and the productivity factors database, the designed land productivity spatial model (DLPSM) was created using ArcGIS software 10.4 and included all of the useful soil factors (discussed above). After that, using a weighted overlay tool, create a final map of the productivity index overlay. Figure 4 depicts the flowchart of the land productivity based on DLPSM.

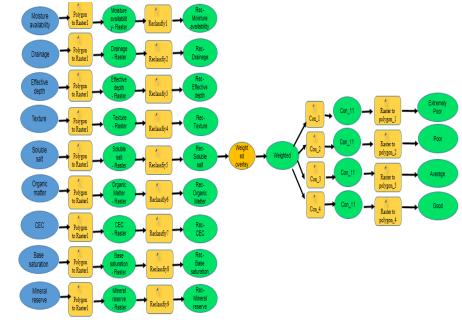


Fig. 4. Flowchart of the land productivity based on DLPSM

RESULTS AND DISCUSSION

Soil characterization

The descriptive statistics values for the examined soil parameters are given in Table 7. In addition, the major soil characteristics of the studied area are tabulated in Table 8. The studied area could be grouped into three categories as following:

Old cultivated soil:

The pH values of the old cultivated soils ranged from 7.44 to 8.21, indicating that these soils fall into the slightly

and moderately alkaline categories. Furthermore, all values indicate that these soils are non-saline, as they are below 4 dS m⁻¹. The dominant texture classes in these soils were sandy loam and sandy clay loam, with clay textured soils occurring in only a few soil profiles. The cation exchange capacity of these soils ranged from 4.03 cmol+/kg to 17.43 cmol+ kg⁻¹, indicating a low to moderate capacity.

The ESP values are low for these soils (below 15%) and ranged from 1.13 to 14.73 %. Soil organic matter was low to moderate. Calcium carbonate content was low and ranged from 5.3% to 49.6 mg kg⁻¹.

J. of Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 14 (6), June, 2023

Land use		propert	ty	Mean	ned soil parame Minimum	Maxi		andard Deviatio	n Sta		
		Soil Depth	(cm)	110.0	70.0	15	0.0	18.2		5.3	
		CEC (Cmol-	+ kg ⁻¹)	8.19	4.03		.43	3.40		0.98	
		ESP		6.70	1.13	14	.73	4.64		1.34	
		$OM (mg kg^{-1})$		9.31	5.00	25.17		5.37		1.55	
Id cultiva	ated	ECe (dSm^{-1})		0.68	0.26	1.		0.48		0.14	
ands		pHe		7.82	7.44	8.	21	0.23	0.07		
		CaCO3 (mg kg ⁻¹)		24.90	5.30		.60	16.99	4.91		
		Base saturation (%)		96.02	83.40		.00	4.96		1.43	
		Soil textu	ure			S	L,L,SC,C				
		Drainag					GD				
		Soil Depth		110.0	100.0		0.0	7.1		2.0	
		CEC (Cmol-	+ kg ⁻¹)	6.44	1.73		.05	4.92		1.42	
		ESP		9.04	3.39		.13	3.91		1.13	
		OM (mg k		5.32	0.52		.62	4.41		1.27	
Vew reclai	imed	ECe (dSn	n⁻¹)	0.96	0.31		65	0.94		0.27	
oils		pHe	. 1.	7.98	7.66		72	0.33		0.10	
		CaCO3 (mg		142.84	22.10		3.50	107.45		31.02	
		Base saturati		97.47	92.80	99	.00	1.98		0.57	
		Soil textu					, SCL, CL, S	5, C			
		Drainag					GD, WD				
		Soil Depth (cm)		122.0	110.0		0.0	16.0		7.2	
		CEC (Cmol-	+ kg-1)	3.09	2.21		70	0.62		0.20	
		ESP	1	8.77	5.36		.33	2.66		0.84	
		OM (mg k		1.83	0.17		76	2.97		0.94	
Barren soil	ls	ECe (dSm^{-1})		13.19	7.65		.15	6.47		2.04	
		pHe	a 1.	7.99	7.65		32	0.25		0.08	
		CaCO3 (mg kg ⁻¹)		279.43	176.70	381.20		83.19		26.31	
		Base saturation (%)		97.51	90.40	99.60		2.86		0.91	
		Soil texture					S, SL				
T		Drainag	ge		anda alam CT a alam		GD, WD	and designed WD	. Wall a		
					andy clay, CL: clay	10am, S: s	andy, GD: G	ood drained, WD	: well d	irained.	
		jor soil chara									
Land	Profile	Drainage	Effective	Texture	CEC	BS	OM	ECe	рНе	CaCO3	
ise	No.	_	depth (cm)	class	(Cmol+ kg-1)	%	(mg kg-1)	(us m-1)		(mg kg-1	
	1	GD	120	SL	7.43	97.5	7.41	0.26	7.65	5.3	
	2 3	GD	100	SCL	8.01	98.4	5.34	0.96	7.61	10.7	
				COL	0.02						
		GD	110	SCL	8.93	98.5	8.45	0.61	8.21	42.5	
	4	GD	100	SCL	7.88	98.5 98.0	8.45 10.52	0.61 0.55	8.21 8.14	42.5 38.4	
Old	4 5	GD GD	100 112	SCL C	7.88 18.05	98.5 98.0 97.3	8.45 10.52 13.62	0.61 0.55 0.51	8.21 8.14 7.77	42.5 38.4 30	
	4 5 6	GD GD GD	100 112 115	SCL C C	7.88 18.05 10.98	98.5 98.0 97.3 98.9	8.45 10.52 13.62 9.48	0.61 0.55 0.51 0.89	8.21 8.14 7.77 7.88	42.5 38.4 30 44	
ultivate	4 5 6 7	GD GD GD GD	100 112 115 110	SCL C C SCL	7.88 18.05 10.98 6.54	98.5 98.0 97.3 98.9 99.0	8.45 10.52 13.62 9.48 7.93	0.61 0.55 0.51 0.89 0.68	8.21 8.14 7.77 7.88 7.64	42.5 38.4 30 44 37.4	
ultivate	4 5 6 7 8	GD GD GD GD GD	100 112 115 110 110	SCL C C SCL L	7.88 18.05 10.98 6.54 8.20	98.5 98.0 97.3 98.9 99.0 98.6	8.45 10.52 13.62 9.48 7.93 10.34	0.61 0.55 0.51 0.89 0.68 0.30	8.21 8.14 7.77 7.88 7.64 7.88	42.5 38.4 30 44 37.4 9.1	
cultivate	4 5 6 7 8 9	GD GD GD GD GD GD	100 112 115 110 110 110	SCL C C SCL L SL	7.88 18.05 10.98 6.54 8.20 7.10	98.5 98.0 97.3 98.9 99.0 98.6 91.6	8.45 10.52 13.62 9.48 7.93 10.34 6.55	0.61 0.55 0.51 0.89 0.68 0.30 0.28	8.21 8.14 7.77 7.88 7.64 7.88 8.01	42.5 38.4 30 44 37.4 9.1 6.2	
ultivate	4 5 6 7 8 9 10	GD GD GD GD GD GD	100 112 115 110 110 110 100	SCL C SCL L SL SL	7.88 18.05 10.98 6.54 8.20 7.10 5.24	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17	0.61 0.55 0.51 0.89 0.68 0.30 0.28 0.46	 8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 	42.5 38.4 30 44 37.4 9.1 6.2 30	
ultivate	4 5 6 7 8 9 10 11	GD GD GD GD GD GD GD GD	100 112 115 110 110 110 100 70	SCL C SCL L SL SL C	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6	
ultivate	4 5 6 7 8 9 10 11 12	GD GD GD GD GD GD GD GD GD	100 112 115 110 110 110 100 70 115	SCL C SCL L SL SL C SL	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43 6.55	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0 99.0 90.3	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00 5.52	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \\ 0.32 \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8	
ultivate	4 5 6 7 8 9 10 11 12 13	GD GD GD GD GD GD GD GD GD	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 70 \\ 115 \\ 115 \\ \end{array} $	SCL C SCL L SL SL C SL SC	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43 6.55 8.44	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0 99.0 90.3 98.7	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00 5.52 6.03	0.61 0.55 0.51 0.89 0.68 0.30 0.28 0.46 0.89 0.32 0.47	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7	
ultivate	$ \begin{array}{r} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \hline 13 \\ 14 \\ \end{array} $	GD GD GD GD GD GD GD GD GD GD	$ \begin{array}{r} 100\\112\\115\\110\\110\\110\\100\\70\\115\\115\\110\\\end{array} $	SCL C SCL L SL SL SL SC SL	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43 6.55 8.44 3.60	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0 90.3 98.7 98.1	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00 5.52 6.03 0.52	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \\ 0.32 \\ \hline 0.47 \\ 1.29 \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.88	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5	
ultivate	4 5 6 7 8 9 10 11 12 13 14 15	GD GD GD GD GD GD GD GD GD GD GD GD	$ \begin{array}{r} 100\\112\\115\\110\\110\\110\\100\\70\\115\\115\\110\\100\\\end{array} $	SCL C SCL SL SL SL SL SL SC SL SCL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42 \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0 90.3 98.7 98.1 95.0	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00 5.52 6.03 0.52 9.14	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \\ 0.32 \\ \hline 0.47 \\ 1.29 \\ 0.38 \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.88 7.66	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1	
ultivate	4 5 6 7 8 9 10 11 12 13 14 15 16	GD GD GD GD GD GD GD GD GD GD GD GD GD	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 70 \\ 115 \\ 115 \\ 115 \\ 110 \\ 100 \\ 100 \\ 110 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 110 \\ 100 \\ 1$	SCL C SCL SL SL SL SL SL SC SL SCL SCL	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43 6.55 8.44 3.60 8.42 9.16	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 99.0 90.3 98.7 98.1 95.0 98.2	8.45 10.52 13.62 9.48 7.93 10.34 6.55 25.17 10.00 5.52 6.03 0.52 9.14 4.48	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \\ 0.32 \\ \hline 0.47 \\ 1.29 \\ 0.38 \\ 0.40 \\ \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.88 7.66 7.68	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2	
ultivate soils	4 5 6 7 8 9 10 11 12 13 14 15 16 17	GD GD GD GD GD GD GD GD GD GD GD GD GD G	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 70 \\ 115 \\ 115 \\ 115 \\ 110 \\ 100 \\ 110 \\ 120 \\ \end{array} $	SCL C SCL SL SL SL SL SL SCL SCL SCL CL	7.88 18.05 10.98 6.54 8.20 7.10 5.24 17.43 6.55 8.44 3.60 8.42 9.16 11.72	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.1 95.0 98.2 98.8	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ \end{array}$	$\begin{array}{c} 0.61 \\ 0.55 \\ 0.51 \\ 0.89 \\ 0.68 \\ 0.30 \\ 0.28 \\ 0.46 \\ 0.89 \\ 0.32 \\ \hline 0.47 \\ 1.29 \\ 0.38 \\ 0.40 \\ 3.65 \\ \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.88 7.66 7.68 8.54	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1	
ultivate soils	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	GD GD GD GD GD GD GD GD GD GD GD GD GD WD	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 100 \\ 115 \\ 115 \\ 110 \\ 100 \\ 110 \\ 120 \\ 100 \\ $	SCL C SCL SL SL SL SL SCL SCL SCL SCL SC	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline \\ 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.1 95.0 98.2 98.8 98.1	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.88 7.66 7.68 8.54 7.90	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9	
ultivate soils Jew eclaime	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	GD GD GD GD GD GD GD GD GD GD GD GD GD WD WD	$ \begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 100\\$	SCL C SCL SL SL SL SL SCL SCL SCL SCL SC	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline\\ 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.7 98.7 98.2 98.8 98.8 98.1 92.8	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ \end{array}$	$\begin{array}{c} 8.21 \\ 8.14 \\ 7.77 \\ 7.88 \\ 7.64 \\ 7.88 \\ 8.01 \\ 7.44 \\ 7.62 \\ 7.96 \\ \hline 7.81 \\ 7.66 \\ 7.68 \\ 8.54 \\ 7.90 \\ 8.72 \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5	
ultivate soils Jew eclaime	$ \begin{array}{r} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $	GD GD GD GD GD GD GD GD GD GD GD GD GD G	$ \begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 100\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SC SCL SCL SCL CL S SL SL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline\\ 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.7 98.7 98.2 98.8 98.8 98.1 92.8 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ \hline \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.81 7.81 7.66 7.68 8.54 7.90 8.72 8.07	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6	
ultivate soils Jew eclaime	$ \begin{array}{r} 4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\end{array} $	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD WD	$ \begin{array}{c} 100\\112\\115\\110\\110\\110\\100\\70\\115\\115\\110\\100\\110\\120\\100\\110\\110\\110\\115\\\end{array} $	SCL C SCL L SL SL SC SCL SCL SCL CL S SL SL SL SL SL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.7 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ \hline \end{array}$	8.21 8.14 7.77 7.88 7.64 7.88 8.01 7.44 7.62 7.96 7.81 7.63 8.54 7.90 8.54 7.90 8.72 8.07 8.02	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5	
ultivate soils Jew eclaime	$ \begin{array}{r} 4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD WD GD	$ \begin{array}{c} 100\\112\\115\\110\\110\\110\\100\\70\\115\\115\\110\\100\\110\\120\\100\\110\\110\\110\\115\\120\\\end{array} $	SCL C SCL SL SL SL SC SCL SCL SCL CL S SL SL S SL S SL S S	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 98.1 92.8 99.0 95.6 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ \end{array}$	$\begin{array}{c} 8.21 \\ 8.14 \\ 7.77 \\ 7.88 \\ 7.64 \\ 7.88 \\ 8.01 \\ 7.44 \\ 7.62 \\ 7.96 \\ 7.81 \\ 7.88 \\ 7.66 \\ 7.68 \\ 8.54 \\ 7.90 \\ 8.72 \\ 8.07 \\ 8.02 \\ 8.00 \\ 8.00 \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3	
ultivate soils Jew eclaime	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD WD GD GD GD	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 70 \\ 115 \\ 115 \\ 110 \\ 100 \\ 110 \\ 120 \\ 100 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 150 \\ 150 \\ 100 \\ 110 \\ 115 \\ 120 \\ 150 \\ 150 \\ 100 \\ 110 \\ 115 \\ 120 \\ 150 \\ 150 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 150 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 150 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 110 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 110 \\ 110 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 110 \\ $	SCL C SCL SL SL SL SC SCL SCL SCL SCL SC	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 98.1 92.8 99.0 95.6 99.0 83.4	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ \end{array}$	$\begin{array}{c} 8.21 \\ 8.14 \\ 7.77 \\ 7.88 \\ 7.64 \\ 7.88 \\ 8.01 \\ 7.44 \\ 7.62 \\ 7.96 \\ 7.81 \\ 7.88 \\ 7.66 \\ 7.68 \\ 8.54 \\ 7.90 \\ 8.72 \\ 8.07 \\ 8.02 \\ 8.00 \\ 7.82 \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8	
ultivate soils Jew eclaime	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD GD GD GD GD GD GD GD GD GD GD	$ \begin{array}{r} 100 \\ 112 \\ 115 \\ 110 \\ 110 \\ 110 \\ 100 \\ 70 \\ 115 \\ 115 \\ 110 \\ 100 \\ 110 \\ 120 \\ 100 \\ 110 \\ 110 \\ 115 \\ 120 \\ 150 \\ 100 \\ 100 \\ 100 \\ 110 \\ 100 \\ 100 \\ $	SCL C SCL SL SL SL SC SC SCL SCL SCL SCL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 98.1 92.8 95.6 99.0 83.4 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7	
ultivate soils Jew eclaime	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD GD GD GD GD WD WD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SC SL SCL SCL SCL SCL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 98.1 92.8 95.6 99.0 83.4 99.0 99.0	$\begin{array}{r} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6	
ultivate soils Jew eclaime	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD G	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SL SCL SCL SCL SCL SC	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 99.0 97.2	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ 8.05\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4	
ultivate soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD G	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SC SL SCL SCL SCL SCL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 95.6 99.0 95.6 99.0 97.2 94.8	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ 8.05\\ 7.65\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9	
Vew colaime soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD G	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SC SL SCL SCL SCL SCL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 95.6 99.0 95.6 99.0 97.2 94.8 90.4	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.65\\ \hline 7.65\\ \hline .5\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ 8.05\\ 7.65\\ 7.65\end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 17.8 17.8 17.8 19.6 339.4 188.7	
Vew eclaime soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD WD WD GD GD GD GD GD GD GD GD GD GD GD GD GD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 100\\ 100\\ 115\\ 115$	SCL C SCL SL SL SL SCL SCL SCL SCL SCL S	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ 3.60\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 97.2 94.8 90.4 98.1	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ 0.52\\ \hline 0.52\\ \hline 0.52\\ \hline \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 49.6 7.8 49.6 7.8 49.6 7.8 49.6 7.8 49.6 305.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9 202.2 176.7	
Vew eclaime I soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD WD WD GD GD GD WD WD WD GD GD GD WD WD WD WD WD WD WD WD WD WD WD WD WD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 100\\ 100\\ 100\\ 115\\ 115$	SCL C SCL SL SL SL SCL SCL SCL SCL SCL S	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ 3.60\\ 3.69\\ \hline \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 97.2 94.8 90.4 98.1 99.6	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ 0.52\\ 0.17\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ 19.23\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ 7.81\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ 7.76\\ 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ 8.21\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 49.6 7.8 49.6 7.8 49.6 7.8 49.6 30 5.2 21 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9 202.2 176.7 292.5	
Vew eclaime I soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD WD WD WD WD WD WD WD WD WD WD WD WD WD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SCL SCL SCL SCL SL S SL SL SL SL SL SL SL SL SL SL SL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ 3.60\\ 3.69\\ 3.60\\ \hline \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 97.2 94.8 90.4 99.0 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ 0.52\\ 0.17\\ 0.34\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.65\\ 7.88\\ 19.23\\ 11.64\\ \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ \overline{7.81}\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ \overline{7.76}\\ \overline{7.70}\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ 8.21\\ 8.11\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9 202.2 176.7 292.5 378.7	
Old cultivate 1 soils New reclaime 1 soils Barren soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD WD WD WD WD WD WD WD WD WD WD WD WD WD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SCL SCL SCL SCL SL SL SL SL SL SL SL SL SL SL SL SL SL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ 3.60\\ 3.69\\ 3.60\\ 2.25\\ \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.7 98.7 98.7 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 97.2 94.8 90.0 97.2 94.8 90.0 99.0 99.0 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ 0.52\\ 0.17\\ 0.34\\ 0.17\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.88\\ 19.23\\ 11.64\\ 20.41\\ \hline \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ \overline{7.81}\\ 7.88\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.07\\ 8.02\\ 8.00\\ 7.82\\ \overline{7.76}\\ \overline{7.76}\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ 8.21\\ 8.11\\ 8.32\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9 202.2 176.7 292.5 378.7 287.4	
Vew eclaime I soils	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array}$	GD GD GD GD GD GD GD GD GD GD GD GD WD WD GD GD GD WD WD WD WD WD WD WD WD WD WD WD WD WD	$\begin{array}{c} 100\\ 112\\ 115\\ 110\\ 110\\ 110\\ 100\\ 70\\ 115\\ 115\\ 110\\ 100\\ 110\\ 120\\ 100\\ 110\\ 110\\ 110$	SCL C SCL SL SL SL SCL SCL SCL SCL SL S SL SL SL SL SL SL SL SL SL SL SL	$\begin{array}{c} 7.88\\ 18.05\\ 10.98\\ 6.54\\ 8.20\\ 7.10\\ 5.24\\ 17.43\\ 6.55\\ \hline 8.44\\ 3.60\\ 8.42\\ 9.16\\ 11.72\\ 5.19\\ 1.73\\ 2.89\\ 1.94\\ 2.52\\ 4.03\\ 3.63\\ \hline 3.12\\ 2.25\\ 3.27\\ 3.70\\ 3.60\\ 3.69\\ 3.60\\ \hline \end{array}$	98.5 98.0 97.3 98.9 99.0 98.6 91.6 99.0 90.3 98.7 98.1 95.0 98.2 98.8 98.1 92.8 99.0 95.6 99.0 83.4 99.0 97.2 94.8 90.4 99.0 99.0	$\begin{array}{c} 8.45\\ 10.52\\ 13.62\\ 9.48\\ 7.93\\ 10.34\\ 6.55\\ 25.17\\ 10.00\\ 5.52\\ \hline 6.03\\ 0.52\\ 9.14\\ 4.48\\ 10.00\\ 2.41\\ 0.69\\ 8.62\\ 1.03\\ 6.72\\ 5.00\\ 0.52\\ \hline 7.07\\ 1.38\\ 7.76\\ 0.52\\ 0.52\\ 0.17\\ 0.34\\ \end{array}$	$\begin{array}{c} 0.61\\ 0.55\\ 0.51\\ 0.89\\ 0.68\\ 0.30\\ 0.28\\ 0.46\\ 0.89\\ 0.32\\ \hline 0.47\\ 1.29\\ 0.38\\ 0.40\\ 3.65\\ 0.31\\ 0.99\\ 0.47\\ 1.07\\ 0.45\\ 1.98\\ 1.47\\ \hline 7.70\\ 8.05\\ 7.65\\ 7.65\\ 7.65\\ 7.88\\ 19.23\\ 11.64\\ \end{array}$	$\begin{array}{c} 8.21\\ 8.14\\ 7.77\\ 7.88\\ 7.64\\ 7.88\\ 8.01\\ 7.44\\ 7.62\\ 7.96\\ \overline{7.81}\\ 7.66\\ 7.68\\ 8.54\\ 7.90\\ 8.72\\ 8.00\\ 7.82\\ \overline{7.76}\\ \overline{7.76}\\ 8.05\\ 7.65\\ 7.65\\ 7.88\\ 8.21\\ 8.11\\ \end{array}$	42.5 38.4 30 44 37.4 9.1 6.2 30 49.6 7.8 47.7 196.5 22.1 37.2 49.1 105.9 313.5 206.6 305.5 211.3 17.8 188.7 191.6 339.4 188.9 202.2 176.7 292.5 378.7	

Table 7. Descri	ptive statistics	values for	the examined	soil parameters

New cultivated soils were alkaline and having pH values ranged from 7.66 to 8.72. These soils were characterized as slightly to moderately alkaline. These soils are categorized under sandy loam, loam and sandy texture classes. Cation exchange capacity of these soils is low. The ESP values varied from low to high and ranged between

3.39 to 17.13%. Organic matter content of these soils ranges between low to moderate. These soils are calcic soils and calcium carbonate content ranges from low to extremely high which ranges from 22.1 to 313.5 mg kg⁻¹. Barren soils these soils are uncultivated yet but may be a prospective area for agricultural activities. These soils having the coarsest fractions (sandy texture class is dominant) as compared to the previous discussed soils. These soils are very high saline and ranged from 7.65 to 24.15 dS m⁻¹. In addition, the organic carbon content is very low. These soils are calcic which calcium carbonate content range from 176.7 to 381.2 mg kg⁻¹. Cation exchange capacity and exchangeable sodium percentage are low.

Productivity index assessment

The productivity potential of the soil profiles assessed using the mathematical model developed by Riquier *et al.* (1970). Previous studies individually calculated the productivity index. However, manual processing is timeconsuming and challenging, especially when dealing with numerous soil samples. Therefore, an attempt made to automate soil productivity using the Python programming language. The developed program can accessed on the website (https://soilhealth .pythonany where.com). The system recommends calculating a productivity index based on eight parameters that determine land production. These parameters include soluble salts (S), soluble organic matter (O), cation exchange capacity (A), drainage (D), effective depth (P), texture/structure (T), texture/structure (T), and mineral reserves (M). Each of these elements coded in Python to automate the calculation of the productivity index. Due to certain preexisting limitations, the real production classes of soils were categorized as good, moderate, low, and severely poor (Table 9).

Land use		•	Drainage D			Reserves of weatherable mineral in B horizon M	OM O	Salinity S	CEC A	BS/ pHe N	LPI %	Definition / symbol
	1	H4c	D3a	P5	T6b	M3c	01	S1	A1	N5	51.03	Good II
Old	2	H3a	D3a	P5	T7	M3c	01	S 1	A1	N5	34.42	Good II
	3	H4b	D3a	P5	T7	M3c	O1	S 1	A1	N5	51.03	Good II
	4	H4c	D3a	P5	T7	M3c	01	S 1	A1	N5	56.7	Good II
	5	H5	D3a	P5	T5b	M2c	01	S 1	A1	N5	45.36	Good II
cultivated	6	H5	D3a	P5	T5b	M3c	O1	S 1	A1	N5	45.36	Good II
soils	7	H4a	D3a	P5	T7	M3c	01	S 1	A1	N5	45.36	Good II
50115	8	H3a	D3a	P5	T7	M3c	01	S1	A1	N5	34.42	Good II
	9	H4c	D3a	P5	T6b	M3c	01	S 1	A1	N5	51.03	Good II
	10	H3a	D3a	P5	T6b	M3c	01	S 1	A1	N5	30.98	Average III
	11	H5	D3a	P4	T5b	M3c	01	S1	A1	N5	36.29	Good II
	12	H4c	D3a	P5	T6b	M3c	01	S1	A1	N5	51.03	Good II
	13	H5	D3a	P5	Тба	M2c	01	S1	A1	N5	45.36	Good II
	14	H4c	D3a	P5	T6a	M2c	01	S1	A0	N5	42.84	Good II
	15	H4a	D3a	P5	T7	M2c	01	S 1	A1	N5	38.56	Good II
	16	H4a	D3a	P5	T7	M2c	01	S1	A1	N5	42.84	Good II
New	17	H5	D3a	P5	Тба	M2c	01	S2	A1	N5	45.36	Good II
reclaimed	18	H2c	D4	P5	T2b	M2a	01	S 1	A1	N5	2.46	Ex. Poor V
soils	19	H2c	D4	P5	T2b	M2a	01	S1	A0	N5		Ex. Poor V
50115	20	H3a	D3a	P5	T4a	M2c	01	S1	A0	N5	9.27	Poor IV
	21	H2c	D4	P5	T2b	M2a	01	S 1	A0	N5	2.46	Ex. Poor V
	22	H3b	D3a	P5	T4a	M2a	01	S 1	A0	N5	9.95	Poor IV
	23	H3a	D3a	P6	T6a	M3c	01	S 1	A0	N5	26.01	Average III
	24	H3a	D3a	P5	Тба	M2c	01	S1	A0	N5	24.71	Average III
	25	H2c	D4	P6	T2b	M2a	01	S1	A0	N5		Ex. Poor V
	26	H2c	D4	P5	T2b	M2a	01	S1	A0	N5	2.46	Ex. Poor V
	27	H2c	D4	P5	T2b	M2a	01	S2	A0	N5		Ex. Poor V
	28	H3a	D3a	P5	T6b	M2c	01	S 1	A0	N5		Average III
Barren	29	H3a	D3a	P5	T6b	M2c	01	S 1	A0	N5	27.80	Average III
soils	30	H2c	D4	P6	T2b	M1	01	S6	A0	N5	0.12	Ex. Poor V
	31	H2c	D4	P6	T2b	M1	O1	S4	A0	N5	0.61	Ex. Poor V
	32	H2c	D4	P6	T2b	M1	O1	S6	A0	N5	0.12	Ex. Poor V
	33	H2c	D4	P6	T2b	M1	O1	S6	A0	N5	0.12	Ex. Poor V
	34	H2c	D4	P6	T2b	M1	O1	S6	A0	N5	0.12	Ex. Poor V
Ex= Extrer	nelv											

Table 9. Productivity assessment of the studied soils

Ex= Extremely

Designed Land Productivity Spatial Model (DLPSM)

The study area's productivity was categorized and assessed using nine thematic factors: effective moisture availability (H), drainage (D), effective depth (P), texture/structure (T), soluble salt (S), organic matter (O), cation exchange capacity (A), base saturation (N), and mineral reserve in B horizon (M). This model was created using ArcGIS software 10.4.1. This was accomplished by creating databases for all previously specified factors (H, D, P, T, S, O, A, N, and M) and using the factors equation. In order to calculate productivity index and create a final productivity classes map, weighted overlay tool is applied. Figure 4 displays a flowchart for the DLPSM. Based on the adopted method, the LPI and its ranking under land use types in the study area were calculated (Table 9).The LPI ranged from 30.98 to 51.03 % and from 2.46 to 45.36 % and from 0.12 to 27.80 % for old cultivated, new cultivated and barren soils, respectively. The LPI is classified into four zones. The first zone is characterized by a good index that represents about 45.58% (325.96 km2) of the total geographical area (TGA). The soils of this zone are located mainly in old cultivated soils. The second zone characterized by average index and covers about 15.77% of TGA (112.78 km2). This class observed in some old, new reclaimed soils and barren soils.

This may be due to the addition of alluvium soils at different amounts on the surface of new reclaimed soils to enhance their characters. As these soils have low values of favorable studied indicators lead to negative effects on the LPI. The third zone is poor and covers about 20.46% (146.32 km²) of TGA and located mainly in some new reclaimed soils as well as desert soils that have low content of favorable and high content of unfavorable conditions for plant growth. The last zone characterized by extremely poor class and located in barren soils and covers an area of about 18.19 % (130.08 km²). The major limitations of these soils are coarse texture, low organic matter content and low CEC. Regarding to Barren soils, the major limitations that mentioned above as well as high salinity conditions hinder the productivity of these soils. Thus, the LPI of these soils may be enhanced through the applications of some management plan. This plan must take into consideration the application of organic manure, green manuring, mulching, and crop rotation. The high salinity soils can be removed by applying leaching and supplying the affected area with efficient drainage system in case of good quality water. The spatial variability of LPI based on DLPSM is shown in figure 5.

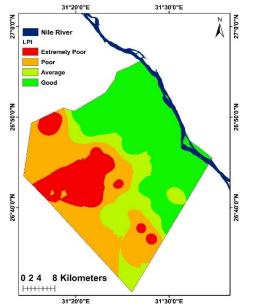


Fig. 5. The spatial variability of LPI based on DLPSM CONCLUSION

The LPI ranged from 30.98 to 51.03 % and from 2.46 to 45.36 % and from 0.12 to 27.80 % for old cultivated, new cultivated and barren soils, respectively. The LPI is classified into four zones. The first zone is characterized by a good index that represents about 45.58% (325.96 km²) of TGA. The second zone characterized by average index and covers about 15.77% of TGA (112.78 km²). The third zone is poor and covers about 20.46% (146.32 km2) of TGA. Finally, the fourth zone characterized by extremely poor class and cover an area of about 18.19 % (130.08 km²). The

developed programe was demonstrated in this study to automate the procedure of land productivity index. Unlike the conventional approach, the results obtained by this approach are reproducible and computation time is low. This may paved the way for automating other indices such as land capability, irrigation water quality index (IWQI) and others. In addition, based on available soil data, the fertilizer recommendations and irrigation water requirements can calculated automatically with high precision.

ACKNOWLEDGMENT

This study acknowledges the financial support provided by the STDF, Egypt. In addition, the author is grateful for the technical support provided by post graduate students Mahmoud A. Elsonbaty; Mustafa A. Elsonbaty and Ahmed H. Mahmoud) for their help and supporting during this work.

REFERENCES

- Blum, W.E.H. (2006). Soil resources The basis of human society and the environment, Bodenkultur 57:197–202.
- CAPMAS. (2009). Egypt in figures. Central Agency for Public Mobilization and Statistics (CAPMAS). Cairo, Egypt.
- Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S. and Von Maltitz, G. (2018). World Atlas of Desertification, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-75350-3, doi:10.2760/9205, JRC111155.
- Devi, G.M.G. and Kumar, K.S.A. (2008). Remote Sensing and GIS Application for Land Quality Assessment for Coffee Growing Areas of Karnataka. Journal of the Indian Society of Remote Sensing 36, 89-97.
- Dengiz, O. and O. Baskan. (2009) Land quality assessment and sustainable landuse in Salt Lake (Tuz Gölü) specially protected area. Environmental Monitoring and Assessment, 148, 233 – 243.
- Dengiz, O. (2007) Assessment of soil productivity and erosion status for the Ankara-Sogulca Catchment Using GIS. International Journal of Soil Science, 2 (1), 15-28.
- FAO, (2018). The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations Rome.
- Mustafa, A. A., Elsonbaty, M. A. Elsonbaty, M. A. and Mahmoud, A. H. (2022). Soil Health. https://soilhealth.pythonanywhere.com
- Riquier, J., D.L. Bramao and J.P. Cornet (1970). A new system of soil appraisal in terms of actual and potential productivity. FAO, Soil Resources, Development and Conservation Service, Land and Water Development Division. FAO, Rome.
- Shehata, H. S. (2014). Floristic composition, ecological studies and nutrient status of Sisymbrium in the Nile Delta, Egypt. Aust J.Basic Appl. Sci. 8 (17): 173-186.
- USDA. (2004). Soil Survey Laboratory Manual. Soil Survey Investigation Report No. 42, Version 4. USDA. NRCS, Nebraska, USDA.

دمج نمذجة نظم المعلومات الجغرافية مع لغة برمجة بايثون لتحديد مؤشر إنتاجية الأرض

عبدالرحمن عبدالواحد مصطفى

قسم الأر اضبي والمياه - كلية الزراعة - جامعة سو هاج - مصر

الملخص

تم اجراء فحص تفصيلي لتقبيم انتاجية التربة في الجزء الشمالي من محافظة سوهاج ، مصر . تم تحديد عدد ٣٤ قطاع تربة ممثل لاستخدامات التربة الزراعة وهي الاراضي القديمة المنزرعة ، الاراضي حديثة الزراعة والاراضي الغير منزرعة. أخذت عينات من كل افق من افاق التربة ومن ثم تم اجراء التحليلات الطبيعية والكيميائية. وبناء علي ذلك تم حساب مؤشر انتاجية التربة. والطريقة المتبعة عادة في الحساب هي طريقة يدوية تقليدية تستهلك كثيرا من الوقت والجهد خاصة مع وجود عد كبير من العينات. وبناء علي ذلك تم البر مجة البايثون لحساب مؤشر انتاجية التربية والاراضي الغير منزرعة. أخذت عينات من كل افق من افاق التربة ومن ثم تم اجراء التحليلات الطبيعية والكيميائية. وبناء علي ذلك تم البر مجة البايثون لحساب مؤشر انتاجية التربة مع دمج النتائج المتحصل عليها بالنماذيه باستخدام نظم المعوانية. ولت خرائط لمؤشر انتاجية التربة، ويعتبر استخدام لغات البرمجة في حساب مؤشر انتاجية التربة من الموار المعالية. ويشاء خرائط لمؤشر انتاجية التربة، والمحاف البرمجة في حساب مؤشر انتاجية التربة من الامور المطلوبة خاصة في عصر تما ستخدام العونات. لذلك تم استخدام لغة