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ABSTRACT 
 

Soil salinity and sodicity are among the primary constraints to agricultural productivity in Egypt. A study 

was conducted to evaluate the impact of phosphogypsum (PG; 4.13 tons/fed) and nano-silica foliar sprays (at 

concentrations of S1:100 and S2: 200 mg/L) on soil properties, nutrient dynamics, and the performance of wheat 

and maize grown in saline-sodic clay soils. The treatments included individual applications of PG and nano-silica 

(S1 and S2), as well as their combined use. The combination of PG and S2 resulted in significant improvements: the 

exchangeable sodium percentage (ESP%) decreased by 12.6%, sodium adsorption ratio (SAR) fell by 14.3%, and 

soil electrical conductivity (EC) was reduced by up to 22.5% compared to untreated plots (control). Additionally, 

this treatment lowered bulk density (BD) by 2.9%, and increased total porosity (TP), indicating enhanced soil 

structure. Nutrient availability, particularly nitrogen, phosphorus, and potassium, was enhanced, supporting 

healthier plant growth. Yield outcomes were also promising, with grain production rising by 27.2% in wheat and 

43.3% in maize, alongside significant gains in plant height, biomass, and 1000-grain weight. The K/Na ratio in both 

straw and grain improved, reducing sodium stress and increasing crop resilience. Overall, the combined application 

of PG and nano-silica proved more effective than their separate use, suggesting this integrated approach as a viable 

strategy for improving saline-sodic soils and supporting sustainable agriculture. 
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INTRODUCTION 
 

Salinity and sodicity represent significant challenges 

to global agricultural productivity, particularly in arid and 

semi-arid regions, where they pose a serious threat to both 

crop yields and food security (Tarolli et al., 2024; Hosseini 

and Bailey, 2024; Outbakat et al., 2022). It is estimated that 

20% of the world’s cultivated land and 33% of irrigated areas 

are affected by salinity (Devkota et al., 2022). In Egypt, saline 

soils are a particular concern in critical agricultural regions, 

including the Nile Delta and newly reclaimed lands (Hagage 

et al., 2024; Aboelsoud et al., 2022). The issue is exacerbated 

in clay soils due to their high sodium (Na⁺) retention capacity 

and low water permeability, which leads to ionic imbalances, 

osmotic stress, oxidative damage, and hindered nutrient 

absorption by plants (Vieira et al., 2024; Atta et al., 2023). 

Wheat (Triticum aestivum L.) is not only a global 

dietary staple but also a vital crop in Egypt, where it plays a 

key role in national food security. However, it is particularly 

susceptible to salinity stress (Abdalla et al., 2022). Despite 

Egypt producing approximately 9 million metric tons of 

wheat in the 2021/22 season, a modest 1.1% increase over the 

previous year, demand continues to outpace supply, with 

domestic consumption reaching 21 million metric tons in the 

same period (USDA, 2021). Exposure to salt stress disrupts 

ionic balance and nutrient allocation in wheat, leading to 

reduced yields and poorer grain quality (Khalifa et al., 2023; 

Khedr et al., 2022; Nadeem et al., 2020). 

Maize (Zea mays L.), which contributes about one-

third of the world’s total grain output (Maqbool and Beshir, 

2019), also exhibits high sensitivity to saline conditions (Ali 

et al., 2022). Egypt’s maize output stood at 7.1 million metric 

tons in 2023 (FAOSTAT, 2023), and the crop is crucial not 

only for food security but also for livestock feed and 

renewable energy production (Misbah et al., 2022). When 

subjected to salinity, maize tends to limit the movement of 

sodium ions (Na⁺) to aerial parts of the plant in an effort to 

minimize biomass reduction (Hu et al., 2022). 

The global phosphate fertilizer industry produces 

around 160 million tons of phosphogypsum (PG) annually, 

with only about 15% of it being utilized (Liu et al., 2019). In 

Egypt, the annual production of PG ranges from 11 to 14 

million tons (El-Kammar et al., 2019; El Rafie et al., 2019). 

PG is known to improve soil physical properties, increase 

nutrient solubility, and promote root development without 

causing significant changes in soil pH (Elbagory et al., 2024; 

Khalifa et al., 2021; Bossolani et al., 2021; da Costa et al., 

2018). When applied to saline clay soils, it has been found to 

enhance aggregate stability and soil fertility (Hasana et al., 

2022; Mahmoud et al., 2021; Tao et al., 2021). However, 

excessive application (above 20%) can lead to metal toxicity 

and disrupt nutrient balance (Smaoui-Jardak et al., 2024). 

In response to these issues, nano-fertilizers have 

emerged as a promising solution (Ahmad and Akhtar, 2019). 

Nano-silica (Nano-Si), known for its large surface area and 

slow-release characteristics (Fatima et al., 2021), has been 

shown to enhance the salt tolerance of crops like wheat and 
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maize by reducing the accumulation of sodium ions (Na) and 

improving the K/Na ratio (Ismail et al., 2022). Additionally, 

it helps mitigate the physiological damage caused by NaCl 

stress (Abdel-Haliem et al., 2017) and promotes plant growth 

and productivity through a variety of physiological 

mechanisms (Rizwan et al., 2023; Mushtaq et al., 2017).  

Although both phosphogypsum (PG) and nano-silica 

(Nano-Si) have shown promise individually in alleviating 

salinity stress, their combined effects on wheat and maize 

grown in saline clay soils remain underexplored. This study 

aims to combine traditional soil amendments with 

nanotechnology to develop a sustainable approach for 

managing saline-affected agriculture. The objectives are to 

evaluate the role of PG in soil reclamation, examine the 

efficacy of Nano-Si foliar treatments in mitigating Na⁺ 

toxicity and enhancing stress tolerance in wheat and maize, 

and identify the most effective combination of PG and Nano-

Si to optimize crop yield, nutrient uptake, and soil health. By 

integrating conventional and nano-enhanced methods, this 

research intends to offer practical, scalable solutions for 

improving salt-affected agricultural systems. 
 

MATERIALS AND METHODS 
 

Experimental Design and Treatments 

Two seasons field experiment spanning two growing 

seasons was carried out during the winter of 2022/2023 and 

the summer of 2023 at Sakha Agricultural Research Station 

farm (31° 5'42.25"N, 30°54'28.51"E), located in Kafr El-

Sheikh Governorate, Egypt. The trials were conducted on 

saline-sodic heavy clay soil (refer to Table 1). A randomized 

complete block design (RCBD) with three replications was 

employed to structure the study. The experimental treatments 

included the following: 

− Control (C): no PG or foliar spray  

− S1: foliar spray of 100 mg/L Nano-Si 

− S2: foliar spray of 200 mg/L Nano-Si  

− PG: 4.13 ton/feddan  

− PG + S1,  

− PG + S2. 
 

Table 1. Soil physicochemical properties at the 

experimental site.  
Chemical  

characteristics 
Value 

Physical 

characteristics 
Value 

EC (paste extract) dS m-1 7.83 Particle size distribution (%) 

pH (suspension 1:2.5 w:v) 8.69 Sand 17.96 

Soluble ions mmol L-1 Silt 25.34 

Na+ 57.57 Clay 56.70 

K+ 0.443 Texture Clayey 

Ca2+ 11.44 CaCO3 (%) 2.38 

Mg2+ 9.38 CEC (cmolc kg-1) 39.18 

HCO3
- 5.00 Bulk density (g.cm-3) 1.38 

Cl- 41.3 Total porosity (%) 47.92 

SO4
2- 32.53 Available NPK  (mg kg-1) 

Sodium adsorption ratio 

(SAR) 
17.77 N 17.86 

Exchangeable sodium 

percent (ESP%) 
19.97 P 9.48 

Organic matter (g.kg-1) 11.40 K 302.5 
* SO4

2- was calculated by the difference, based on the charge balance 

between the total measured soluble cations and anions.  
 

Field Management 

Each experimental plot measured 3 × 3 meters, with 

the total study area covering 162 m2. Phosphogypsum (PG) 

was applied at a rate of 4.13 tons/fed, following Tao et al. 

(2021). Phosphogypsum application estimated using the 

gypsum requirement method, which is based on the soil's 

cation exchange capacity (CEC) and the desired reduction in 

exchangeable sodium percentage (ESP). The following 

calculations outline the steps involved. The initial ESP of the 

soil is 19.97%, and the target ESP is 15%. Therefore, the ESP 

reduction required is: ESP to be 

reduced=19.97%−15%=4.97% 

The amount of exchangeable sodium to be replaced is 

calculated by multiplying the ESP reduction by the soil CEC: 
Exchangeable Na=0.0497×39.18=1.95 meq Na/100 g soil 

Using the standard conversion factor of 1.7 tons of 

gypsum per 1 meq of sodium per 100 g soil per feddan, the 

gypsum requirement is: 
Gypsum Requirement =1.95×1.7=3.32 tons per feddan 

Since the phosphogypsum available has a purity of 

80%, the actual amount required is adjusted as follows: 
Phosphogypsum required=3.320.80=4.15 tons per feddan 

Along with 150 kg/fed of calcium superphosphate 

(15.5% P2O5), both incorporated into the soil during seedbed 

preparation. Potassium sulfate (50 kg/fed, 50% K2O) was 

added 30 days after sowing (DAS). Nitrogen was supplied in 

the form of urea in two equal applications at 30 and 60 DAS 

at rates of 70 kg N/fed for wheat and 120 kg N/fed for maize 

at 30 and 45 DAS. 

Wheat cultivar Giza 171 was broadcast sown on 12 

November 2022 at a seeding rate of 70 kg grain/fed, while 

maize hybrid 368 was ridge-planted on 15 May 2023 at 10 

kg/fed. Seeds for both crops were obtained from the Field 

Crops Research Institute, Sakha Agricultural Research 

Station, Kafr El-Sheikh, Egypt. 

Nano-silica (Nano-Si) was applied as a foliar spray at 

a rate of 200 liters/fed at both 15, 30 and 60 DAS. Irrigation 

was scheduled at 30-day intervals for wheat and 15 day for 

maize, and all additional field management practices adhered 

to the protocols established by the Egyptian Ministry of 

Agriculture. 

Materials 

1. Phospho-gypsum (PG) 

Source: Fertilizer industry (Abu-Zaable, El-Sharkia, Egypt). 

Properties: 

− pH: 3.2 was measured in the 1:5 (PG: water extracts) 

− Major components: CaO (35.9%), SO₃ (44.08%), SiO₂ 

(9.95%), P₂O₅ (1.08%)  

− Trace elements: Fe₂O₃ (1.64%), Na₂O (0.24%), TiO₂ 

(0.15%), F (0.36%)  

2. Nano-Silica (Nano-Si) Synthesis 

Nano-silica (Nano-Si) was produced from rice husks 

following the procedure described by Wang et al. (2011). 

Initially, rice husks were boiled in a 10% hydrochloric acid 

solution for two hours, then thoroughly washed with 

deionized water and dried at 100°C for 24 hours. The dried 

material underwent calcination at 700°C for two hours in a 

muffle furnace. Characterization techniques such as X-ray 

diffraction (XRD), scanning electron microscopy (SEM), and 

transmission electron microscopy (TEM) confirmed that the 

synthesized nanoparticles ranged in size from 20 to 30 nm. 

Measurements and Analysis 

Soil Analysis 
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Surface soil samples collected from the 0–30 cm layer 

were air-dried, passed through a 2.0 mm sieve, and 

thoroughly mixed to ensure uniformity. Chemical and 

physical properties were analyzed using procedures outlined 

by Piper (1950), Page (1982), Campbell (1994), and 

Rengasamy and Churchman (1999). The methods used were 

as follows: 
▪ pH: Measured using a pH meter (Jenway model 4320) 
▪ Electrical Conductivity (EC): Measured using an EC 

meter (Jenway model 4320) 
▪ Soluble ions: Measured using titration and using a flame 

photometer  
▪ Available Nitrogen: Determined by the semi-micro 

Kjeldahl method 
▪ Available Phosphorus: Measured using a 

spectrophotometer 
▪ Available Potassium: Determined using a flame 

photometer 
▪ Organic Matter: Estimated using the Walkley and Black 

method 
▪ Cation Exchange Capacity (CEC): Measured by the 

ammonium saturation method 
▪ Calcium Carbonate (CaCO₃): Determined using a 

calcimeter 
▪ Particle Size Distribution: Determined by the pipette 

method 
▪ Bulk Density: Measured using the core sampler method 
▪ Total Porosity: Calculated using the formula: 1 - (Bd/Dp), 

where Bd is bulk density and Dp is particle density 

Plant Analysis 
At the time of harvest, several parameters were 

measured for both wheat and maize, including plant height 
(cm), thousand-grain weight (gm), grain yield, and straw yield 
(ton/fed). Nutrient content specifically nitrogen (N), 
phosphorus (P), potassium (K), and sodium (Na) was 
analyzed in both grain and straw samples following the 

procedures described by Page (1982). Additionally, K/Na 
ratios were calculated. 

Statistical Analysis 
Statistical analysis was performed using analysis of 

variance (ANOVA) with Minitab version 21, followed by 
Tukey’s post hoc test to determine significant differences at 
the 0.05 significance level according to (Bower, 2000) 

 

RESULTS & DISCUSSIONS 
 

Results 

Soil Characteristics 
Table 2 illustrates that the application of 

phosphogypsum (PG), particularly in combination with nano-
silica (PG+S₂), significantly improved soil properties during 
both the wheat and maize growing seasons. 

Salinity and Sodicity: 
Under the PG+S₂ treatment, electrical conductivity 

(EC) decreased by 19.5% following wheat cultivation (from 
7.54 to 6.07 dS/m) and by 22.5% after maize (from 6.31 to 
4.89 dS/m). Similarly, the sodium adsorption ratio (SAR) was 
reduced by 3.8% in wheat and 14.3% in maize compared to 
the control treatments. The exchangeable sodium percentage 
(ESP) also showed a decline, with a 3.2% reduction following 
wheat and a 12.6% reduction following maize, from 19.04% 
to 16.64%. These results demonstrate the effectiveness of PG-
based treatments in ameliorating saline-sodic soils. The 
calcium ions (Ca²⁺) provided by PG replace the sodium ions 
(Na⁺) adsorbed onto soil colloids, facilitating their leaching 
from the soil. Additionally, spraying nano-silica enhance 
plant growth which led to more root growth and distribution 
this may be affect soil organic matter and increase root 
channels, further promoting the displacement of sodium. 
These findings are consistent with the work of Elbagory et al. 
(2024), Khalifa et al. (2021), Bossolani et al. (2021), and da 
Costa et al. (2018). 
 

 

Table 2. Soil properties under PG and nano-silica treatments. 
Treatment EC(dS/m) SAR ESP(%) BD(g/cm³) TP(%) N(mg/kg) P(mg/kg) K(mg/kg) 

Wheat 2023 
C 7.54a 17.02a 19.25a 1.37a 48.43b 17.84b 10.35b 328.93b 
S1 7.53a 17.01a 19.24a 1.37a 48.43b 17.82b 10.69b 328.96b 
S2 7.53a 17.00a 19.24a 1.36a 48.76b 17.76b 10.59b 329.35b 
PG 6.07b 16.39b 18.64b 1.34b 49.56a 25.64a 11.77a 359.61a 
PG+S1 6.07b 16.38b 18.64b 1.34b 49.56a 25.77a 11.89a 359.70a 
PG+S2 6.07b 16.38b 18.64b 1.33b 49.69a 26.06a 11.93a 359.77a 

Maize 2023 
C 6.31a 16.80a 19.04a 1.36a 48.55b 18.02b 9.78d 315.59b 
S1 6.30a 16.79a 19.03a 1.36a 48.68b 18.04b 10.13c 315.88b 
S2 6.29a 16.78a 19.02a 1.36a 48.68b 18.14b 10.12c 316.09b 
PG 4.95b 14.46b 16.71b 1.32b 50.19a 28.37a 12.14b 393.30a 
PG+S1 4.93b 14.40b 16.65b 1.32b 50.08a 28.55a 12.41ab 394.23a 
PG+S2 4.89b 14.39b 16.64b 1.32b 50.06a 28.82b 13.02a 394.63a 
* Notes: C: control; S1: Spray with 100 Nano-Si L-1;  

S2: Spray with 100 Nano-Si L-1; PG: 4.2 ton phosphogypsum fed-1  
 

Soil Physical Properties 
The application of PG+S₂ also resulted in 

improvements to the soil’s physical structure. Bulk density 
(BD) decreased by 2.9% (from 1.37 to 1.33 g/cm³), while total 
porosity (TP) increased by 2.6% for wheat and 3.2% for 
maize. These modifications indicate enhanced soil aeration 
and reduced compaction, likely due to the flocculation of clay 
particles induced by PG (Nayak et al., 2013). Spraying with 
nano silica can increase soil permeability by improving root 
growth, which leads to penetration into the soil and 
decomposing root remains, increasing organic matter and as 
a result, decreasing bulk density. 

Nutrient Availability 
The combination of PG+S₂ notably enhanced nutrient 

availability. Nitrogen levels increased by 46.1% in wheat and 
59.9% in maize compared to the control. Phosphorus content 
rose by 15.3% in wheat and 33.1% in maize, while potassium (K) 
saw an increase of 9.4% in wheat and 25.0% in maize. These 
improvements are likely due to reduced interference from Na⁺ in 
nutrient uptake, along with enhanced microbial mineralization 
facilitated. Furthermore, S₂ may enhance plant growth plant 
growth and increase acidic secretions in the root leading to 
increase the solubility of PG, thereby increasing the availability 
of calcium ions (Ca). Overall, the PG+S₂ combination 
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consistently outperformed the individual treatments, suggesting a 
synergistic effect where PG improves soil chemical properties, 
while S₂ enhances nutrient efficiency and promotes soil 
biological activity (Bossolani et al., 2022; Hasana et al., 2022; 
Mahmoud et al., 2021; Tao et al., 2021). 

Crop Growth and Yield 

Wheat (2023) 
The PG+S₂ treatment resulted in the highest grain 

yield of 3.65 t/fed, marking a 27.2% increase compared to the 
control (2.87 t/fed). Both, PG+S₂ and PG alone boosted yields 
by 23.0% and 13.6%, respectively (Table 3). Additionally, 
biomass yield improved by 14.2% under PG+S₂. The 1000-
grain weight increased to 57.6 g, representing a 12.3% gain 
over the control, while plant height grew by 29.9%, reaching 
116.1 cm compared to 89.4 cm in the control (Table 3). 

Table 3. Crop growth and yield parameters under PG 

and nano-silica treatments. 

Treatment 
Grain 
Yield 

(ton/fed) 

Straw 
Yield 

(ton/fed) 

1000-Grain 
Weight 

(g) 

Plant 
Height 
(cm) 

Wheat 2023 
C 2.87d 3.51c 51.3e 89.4f 
S1 3.08c 3.79b 53.8c 98.4e 
S2 3.16bc 3.77b 54.6b 103.0d 
PG 3.26ab 3.79ab 54.9a 106.5d 
PG+S1 3.53a 3.99a 57.6a 114.4b 
PG+S2 3.65a 4.01a 57.6a 116.1a 

Maize 2023 
C 1.64 e 5.11f 384.07d 118.33d 
S1 1.93 d 6.26 e 412.80c 136.80c 
S2 2.24 c 5.59 d 423.20bc 163.33 c 
PG 2.39 b 6.74 c 434.20b 171.67d 
PG+S1 2.48ab 7.80 b 436.33ab 173.33ab 
PG+S2 2.57 a 8.95a 449.33a 176.67a 
* Notes: C0: control; S1: Spray with 100 Nano-Si L-1; S2: Spray with 100 

Nano-Si L-1; PG: 4.2 ton phosphogypsum fed-1 Maize (2023) 
 

The PG+S₂ treatment significantly boosted maize 

grain yield by 56.7%, from 1.64 to 2.57 t/fed. Biomass yield 

increased by 75.2%, from 5.11 to 8.95 t/fed, and the 1000-

grain weight rose by 17.0%, from 384.07 to 449.33 g. Plant 

height also increased by 49.3%, reaching 176.67 cm. 

These findings suggest that PG+S₂ substantially 

enhanced growth parameters by improving nutrient uptake, 

mitigating Na⁺ toxicity, and enhancing stress tolerance. PG 

supported root development and nutrient movement, while S₂ 

improved the K/Na ratio and facilitated osmotic adjustment. 

The performance of treatments across both crops followed 

this ranking: PG+S₂ > PG+S1 > PG > S₂ > S1 > Control. 

This ranking highlights that while PG alone is 

effective, nano-silica further amplifies its impact. In saline-

affected areas, the combination of PG+S₂ provides the 

greatest benefit, PG alone offers a cost-efficient solution, and 

S₂ can be a useful alternative where PG is not readily 

available. These results align with earlier studies. For 

instance, Grechishkina et al. (2024) noted a gradual increase 

in PG's effectiveness over time, and Ayman et al. (2020) 

reported enhanced NPK and silicon uptake with similar 

treatments. 

Nutrient Composition 

The application of PG+S₂ significantly increased 

nutrient concentrations in both grain and straw for wheat and 

maize (Table 4). 

Nitrogen levels in grain rose by 16.4-17.2% and by 

77.5-87.0% in straw, phosphorus content increased by 53.1-

56.8% in grain and by 134.6-163.6% in straw and potassium 

concentrations nearly doubled in grain and increased by 58.5-

132.1% in straw. 
 

Table 4.Crop growth and yield parameters under PG and nano-silica treatments. 
 Grain Straw 
Treatment N% G P% G K% G Na% G K/Na G Ratio N% S P% S K% S Na% S K/Na S Ratio 

Wheat 2023 
C 1.16e 0.463g 0.668f 2.69a 0.248e 0.244e 0.022e 0.381d 4.33a 0.088d 
S1 1.24de 0.521e 0.795e 2.22bc 0.358e 0.298de 0.032d 0.456cd 4.14ab 0.110cd 
S2 1.26cd 0.530e 0.827de 2.10c 0.394d 0.325d 0.042c 0.477c 4.08b 0.117cd 
PG 1.27cd 0.569d 0.869d 1.94c 0.448cd 0.365cd 0.031d 0.488c 4.05b 0.120 cd 
PG+S1 1.33b 0.592b 0.933d 1.70d 0.559d 0.406b 0.055b 0.562b 3.86cd 0.146b 
PG+S2 1.36a 0.606a 0.966a 1.54e 0.627a 0.433a 0.058a 0.604a 3.75d 0.161a 

Maize 2023 
C 1.22e 0.484g 0.587f 2.99a 0.196e 0.237e 0.026e 0.284e 4.59a 0.062e 
S1 1.30de 0.512e 0.708e 2.54c 0.279de 0.291de 0.035d 0.346cd 4.17b 0.083d 
S2 1.30de 0.539e 0.767e 2.42c 0.317d 0.307d 0.043cd 0.454c 4.05b 0.112cd 
PG 1.33cd 0.554d 0.782d 2.31d 0.339cd 0.318cd 0.047c 0.488c 3.95b 0.124d 
PG+S1 1.37b 0.599b 0.890b 1.94e 0.459b 0.359b 0.050b 0.526b 3.68c 0.143b 
PG+S2 1.42a 0.620a 0.869a 1.86f 0.468a 0.386a 0.061a 0.543a 3.64c 0.149a 
* Notes: C: control; S1: Spray with 100 Nano-Si L-1; S2: Spray with 100 Nano-Si L-1; PG: 4.2 ton phosphogypsum fed-1  

 

The combination of PG+S₂ significantly reduced Na 
accumulation in grain by 69-70.2% and in straw by 13.4–
20.7%. The K/Na ratio was improved by 29.7-482% in grain 
and 82.9-187.1% in straw, which is a crucial indicator of 
enhanced salt stress tolerance. The superior performance of 
PG+S₂ is attributed to the synergistic effects of each 
treatment. PG provides calcium and sulfur, improving soil 
chemistry, facilitating clay flocculation, and enhancing 
nutrient movement (Michalovicz et al., 2019). Meanwhile, 
nano-silica boosts physiological resilience, regulates ions, 
enhances photosynthesis, and helps maintain osmotic 
balance. This combined action results in healthier plants, 
improved yields, better nutrient status, and increased salt 
tolerance, making PG+S₂ an effective strategy for sustainable 
agriculture in salt-affected soils. The nano-silica likely 
facilitated ion transport and promoted growth-enhancing 

mechanisms. These results are consistent with the findings of 
Coskun et al. (2019), who reported that nano-silica limits Na⁺ 
translocation through endodermal barriers. Additionally, 
Shoukat et al. (2024) and Rizwan et al. (2023) emphasized 
that nano-Si enhances phosphorus and potassium uptake 
under saline-sodic conditions. 

 

CONCLUSION 
 

The combined application of 4.13 tons of 
phosphogypsum per fed and 200 mg/L nano-silica (S₂) foliar 
spray effectively alleviated salinity stress in wheat and maize 
grown on clay soils. This treatment improved soil health by 
lowering salinity (EC), sodicity (SAR, ESP), and bulk density, 
while enhancing porosity and nutrient availability (N, P, K). 

PG+S₂ consistently produced the highest yields, better 
grain quality, and increased stress resilience, as indicated by 
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improved K/Na ratios and reduced sodium accumulation in 
plant tissues. While PG alone also provided significant 
benefits and proved to be a cost-effective option, S₂ can be 
used in regions where PG is not available. 

Future research should investigate the optimal 
application rates for different soil types, long-term effects on 
soil biology and organic matter, and the economic feasibility 
of adopting this approach on a larger scale. 
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انتاجية المحاصيل فى الاراضى   التربة و  للفوسفوجبسيم والنانو سيليكا فى تحسين خصائص  المتكامل  التطبيق 

 الطينية الملحية الصودية 

 1تامر حسن خليفة   و   2، سارة احمد الشباسى 1اسماء فتحى بدوى 

 مركز البحوث الزراعية   - معهد بحوث الاراضى و المياه و البيئة - قسم بحوث تحسين وصيانة الاراضى   1
 مركز البحوث الزراعية   - معهد بحوث الاراضى و المياه و البيئة - قسم بحوث كيمياء و طبيعة الاراضى   2

 الملخص 
طن/فدان والرش الورقى بالنانو    4.13جيبسيم بمعدل  تعُد ملوحة التربة و الصودية من أهم المعوقات التي تؤُثر على الإنتاجية الزراعية في مصر. أجُريت دراسة لتقييم تأثير اضافة الفوسفو 

داء القمح والذرة المنزرعين في تربة طينية ملحية صودية. شملت المعاملات استخدام  ملليجرام/لتر( على خصائص التربة، وتوافر العناصر الغذائية، وأ   200و    100سيليكا )بتركيز  

ملليجرام / لتر    200( بشكل فردي، بالإضافة إلى الاستخدام المشترك لهما. وقد أدى الجمع بين الفوسفوجيبسيم والرش الورقى بالنانو سيليكا بمعدل  S2و   S1الفوسفوجيبسوم والنانو سيليكا ) 

( بنسبة تصل إلى  EC، والتوصيل الكهربائي للتربة ) % 14.3( بنسبة  SAR، ونسبة ادمصاص الصوديوم ) % 12.6( بنسبة  ESPإلى تحسينات ملحوظة: انخفضت نسبة الصوديوم المتبادل ) 

(، مما يشير إلى تحسن في بنية التربة. وتحسّن  TPوزادت المسامية الكلية )   % 2.9( بنسبة  BDمقارنةً بالكنترول. بالإضافة إلى ذلك، خفّضت هذه المعاملة انخفاض الكثافة الظاهرية )   % 22.5

  % 56.7في القمح و   % 27.2والبوتاسيوم، مما دعم نموًا صحياً للنبات. وكانت نتائج الغلة واعدة أيضًا، حيث ارتفع إنتاج الحبوب بنسبة  توافر العناصر الغذائية، وخاصة النيتروجين والفوسفور  

حبوب، مما قلل من إجهاد الصوديوم  القش وال في الذرة، إلى جانب زيادات ملحوظة في طول النبات والكتلة الحيوية ووزن الألف حبة. وتحسّنت نسبة البوتاسيوم إلى الصوديوم في كل من  

ملليجرام / لتر فعالية أكبر من استخدامهما بشكل منفصل، مما    200وزاد من تحمل المحاصيل. وبشكل عام، أثبت الاستخدام المشترك للفوسفوجيبسيم والرش الورقى بالنانو سيليكا بمعدل 

 الصودية ودعم الزراعة المستدامة. - سين التربة الملحية يشير إلى أن هذا النهج المتكامل يعُدّ استراتيجية فعاّلة لتح 
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