CHEMICAL AND BIOLOGICAL APPROACHES FOR IMPROVING WHEAT PRODUCTIVITY UNDER SALINE SODIC SOIL CONDITIONS
Abbas, H. H.¹; M. E. Al¹; Kh. A. Shaban² and M. I. Mohaseb²
1- Fac. of Agric. Benha Univ. Egypt.
2- Soil, Water and Environ. Inst., ARC., Giza, Egypt.

ABSTRACT

The current work represents a trial towards improving wheat productivity grown on a saline sodic soil in El-Tina plain, North Sinai. Fulfilling such an objective was executed through three approaches all of them aim at increasing the plant tolerance for salinity. The first approach involved supplying the plant with its N requirement from different sources i.e. readily available N (urea), slow release N fertilizers i.e. urea formaldehyde and sulfur coated urea each at a rate of 114 kg N ha⁻¹ beside of a compost of plant residues at a rate of > 119 mg ha⁻¹. The second approach involved inoculating the wheat seeds with Azospirillum brasilense No. 40 (salt tolerant bacteria) while the third approach involved spraying the grown plants with the growth osmoregulator proline at a rate of 950 L ha⁻¹ (30 mg proline L⁻¹). Results revealed that the studied approached could succeed when applied solely in increasing wheat yield and its attributes, however, the combined treatment of applying compost, inoculation with Azospirillum sp and spraying the grown plants with proline was extremely important for maximizing grain yield and increasing uptake of the different nutritive elements i.e. N, P, K, Fe, Mn and Zn.

Keywords: chemical, biological approaches, wheat, saline sodic soils.

INTRODUCTION

Wheat is one of the strategic crops (Gad and Kandil, 2011), probably the most important crop in Egypt (McVey et al., 2004). The domestic production of wheat is not sufficient to cover the public needs, consequently the Egyptian government imports around 7.15 million tons annually to insure public food security and at the same time, support land reclamation strategies for increasing the domestic production of wheat on the long run (Shehata and Mohammed, 2010). On the other hand, soil salinity has become one of the main features in the newly reclaimed soils (Sakadevan and Nguyen, 2010) and even in the Nile delta (Kotb et al., 2000). This problem arises mainly from soil aridity and the preset share for the Egyptian government in the Nile water (El-Agha et al., 2011). Soil salinity lowers the total soil-water potential and limits water mobility and flux by plant roots (Munns, 2010; Sucre and Suárez, 2011), thus induces drought conditions for the grown plants (Ramoliya et al., 2004). This stress could affect negatively plant growth parameters and reduces the yield quality of the outcome product (Barbieri et al., 2011). One of the main approaches for increasing plant tolerance for the saline conditions is inoculating plant seeds with halophytic growth promoting rhizobacterium of Azospirillum brasilense which can symbiotically live with the grown plant (Zarea et al., 2012). Also, utilization of growth osmo-regulator proline can
reduce the negative impacts of soil salinity (Abd El-Samad et al., 2010; Manjili et al., 2012 and Sakr et al., 2012).

The current research aimed at studying the effects of *Azospirillum brasilense* as well as the effect of proline under different N sources on wheat plant and increasing its productivity.

MATERIALS AND METHODS

Site description

The area of study is located at Sahl-El-Tina Plain, North Sinai between 32°35' and 32°45' E and 31°00' and 31°25' N. A representative surface soil sample (0-30 cm) was collected from the studied area during the winter season of 2011/2012. Analysis the soil was a saline sodic sandy clay, moderately alkaline (Table 1).

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.sand (%)</td>
<td>14.17</td>
</tr>
<tr>
<td>F. sand (%)</td>
<td>55.83</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>7.36</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>22.64</td>
</tr>
<tr>
<td>Texture</td>
<td>Sandy clay</td>
</tr>
<tr>
<td>OM (g kg⁻¹)</td>
<td>6.1</td>
</tr>
<tr>
<td>CaCO₃ (g kg⁻¹)</td>
<td>103</td>
</tr>
<tr>
<td>pH (1:2.5 wv⁻¹)</td>
<td>8.10</td>
</tr>
<tr>
<td>EC (dSm⁻¹)</td>
<td>7.2</td>
</tr>
<tr>
<td>Soluble ions (mmole L⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>10.2</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>20.4</td>
</tr>
<tr>
<td>Na⁺</td>
<td>93.5</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.9</td>
</tr>
<tr>
<td>HCO⁻</td>
<td>7.5</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>80.0</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>37.5</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>0.0</td>
</tr>
<tr>
<td>SAR</td>
<td>24</td>
</tr>
<tr>
<td>N</td>
<td>38.0</td>
</tr>
<tr>
<td>P</td>
<td>6.9</td>
</tr>
<tr>
<td>K</td>
<td>181</td>
</tr>
<tr>
<td>Fe</td>
<td>3.1</td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
</tr>
<tr>
<td>Zn</td>
<td>1.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.01</td>
</tr>
</tbody>
</table>

pH was determined in soil: water suspension 1:2.5, EC was determined in soil paste extract

This area is irrigated with El-Salam Canal water (Nile water mixed with agricultural drainage water at a ratio of 1:1). The chemical characteristics of the irrigation water during October 2011 to May 2012 are shown in Table 2.
Table 2: Chemical characteristics of El-Salam canal irrigation water during summer and winter of 2011/2012.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.14</td>
<td>8.17</td>
<td>8.21</td>
<td>8.10</td>
<td>8.22</td>
</tr>
<tr>
<td>EC (dS m⁻¹)</td>
<td>1.03</td>
<td>1.18</td>
<td>1.25</td>
<td>1.20</td>
<td>1.27</td>
</tr>
<tr>
<td>SAR</td>
<td>4.22</td>
<td>4.31</td>
<td>4.41</td>
<td>4.29</td>
<td>4.56</td>
</tr>
<tr>
<td>NO₃ N (mgL⁻¹)</td>
<td>7.25</td>
<td>7.44</td>
<td>8.20</td>
<td>8.41</td>
<td>9.41</td>
</tr>
<tr>
<td>NH₄ N (mgL⁻¹)</td>
<td>12.78</td>
<td>13.28</td>
<td>13.45</td>
<td>13.41</td>
<td>14.16</td>
</tr>
<tr>
<td>P (mgL⁻¹)</td>
<td>3.69</td>
<td>4.55</td>
<td>5.71</td>
<td>5.60</td>
<td>4.93</td>
</tr>
<tr>
<td>K (mgL⁻¹)</td>
<td>6.21</td>
<td>6.35</td>
<td>6.51</td>
<td>6.46</td>
<td>7.19</td>
</tr>
<tr>
<td>Fe (mgL⁻¹)</td>
<td>1.96</td>
<td>2.33</td>
<td>2.47</td>
<td>2.31</td>
<td>3.16</td>
</tr>
<tr>
<td>Mn (mgL⁻¹)</td>
<td>1.16</td>
<td>1.46</td>
<td>1.52</td>
<td>1.27</td>
<td>1.68</td>
</tr>
<tr>
<td>Zn (mgL⁻¹)</td>
<td>0.90</td>
<td>0.96</td>
<td>0.98</td>
<td>1.03</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Materials of study
1- An inoculum of the salt tolerant “Azospirillum brasilense No.40” bacteria in a water suspension (supplied by the Microbiology Department, Soil. Water and Environment Research Institute, of the Agriculture Research Center “ARC”, Giza, Egypt).
2- The growth osmo-regulator proline at a concentration of 30 mgL⁻¹.
3- Compost of plant residues the chemical properties of which are shown in Table 3.
4- The Nitrogen fertilizer source of urea (460 g N kg⁻¹), urea formaldehyde (400 g N kg⁻¹) sulfur coated urea (400 g N and 170 g S kg⁻¹);
5- Seeds of wheat (Triticum aestivum c.v Sakha 93) supplied by the Field Crops Research Institute ARC.

Table 3: Chemical properties of the compost under study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>4.21 dSm⁻¹</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
</tr>
<tr>
<td>Moisture content %</td>
<td>25 %</td>
</tr>
<tr>
<td>Nutrients kg⁻¹</td>
<td></td>
</tr>
<tr>
<td>O M</td>
<td>448.7 g kg⁻¹</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>9.1</td>
</tr>
<tr>
<td>O C</td>
<td>260</td>
</tr>
<tr>
<td>N</td>
<td>28.6 g kg⁻¹</td>
</tr>
<tr>
<td>P</td>
<td>8.0 g kg⁻¹</td>
</tr>
<tr>
<td>K</td>
<td>1.57 g kg⁻¹</td>
</tr>
<tr>
<td>Fe</td>
<td>230 mg kg⁻¹</td>
</tr>
<tr>
<td>Mn</td>
<td>80 mg kg⁻¹</td>
</tr>
<tr>
<td>Zn</td>
<td>115 mg kg⁻¹</td>
</tr>
<tr>
<td>Cu</td>
<td>44 mg kg⁻¹</td>
</tr>
</tbody>
</table>

pH and EC were determined in compost suspension 1:2.5.
The field study

A field experiment was conducted during the winter season of 2011/2012. The experimental design was a randomized complete block with three factors:

1. **N-source**: no N application "N0", urea "N1", urea formaldehyde "N2", sulfur coated urea "N3" and compost "N4". The rate of N was 114 kg ha\(^{-1}\).

2. **Biofertilization**: no biofertilization "B0" and biofertilization by inoculation with "Azospirillum brasilense" No.40 "B1" (1 mL contain 3x10\(^{9}\) bacterial cell) which was used for inoculation of wheat seeds at a rate of 2.4 kg ha\(^{-1}\) and then sprayed on the soil beside the plant roots at 30 and 60 days after seeding at a rate of 12 L ha\(^{-1}\).

3. **Proline spray**: no spray "P0" and foliar spray with proline "P1". The rate of spray was 950 L ha\(^{-1}\).

4. **Compost**: added at a rate of 11.9 Mg ha\(^{-1}\) 25 days before seeding, half the amount of compost was incorporated into the soil before ploughing and the other half was applied after ploughing followed by thorough harrowing to be mixed thoroughly with the 5-cm soil surface. The preparation of compost was done using a quantity of 5000 kg of an air-dry mixture of shredded plant residues of wheat straw, rice straw, faba bean straw and maize stover. About 300 kg of well decomposed farmyard manure was thoroughly mixed with the mixture to enhance microbial activity, then made into heaps each of about 8 layers. The heaps were moistened with sufficient water. Every 21 days, they were turned over and thoroughly mixed (3 turns) until the obtained compost was well decomposed. Detailed operations on composting are given by Shaban (2005).

Total number of plots of the experiment was 60 (2 "biofertilization" X 2 "N treatment" X 2 "proline treatment" X 3 replicates). The plot area was 6 m\(^2\). On the 15th of October 2011 seeds of wheat (Triticum aestivum, c.v. Sakha 93) were sown at a rate of 144 kg ha\(^{-1}\). The soil of the experiment received calcium super-phosphate (67.7 g P kg\(^{-1}\)) at a rate of 16 kg P ha\(^{-1}\) during soil preparation, while potassium sulphate (400 g K kg\(^{-1}\)) at a rate of 236 kg ha\(^{-1}\) was added in 3 equal splits 21, 42 and 62 days of planting. Wheat was harvested on the 25\(^{th}\) of May 2012 (when moisture of grains was about 12%). Grain samples were taken determining NPK contents.

Laboratory: Analyses:

Particle size distribution, CaCO\(_3\) content, organic matter content, pH, EC and soluble ions and available nutrients were determined in soil. Plant compost and water samples were also determined. Extractions of available nutrients were by 0.5 m KCl (for N), ammonium bicarbonate "AB-DTPA (for P, K, Fe, Mn, Zn and Cu)". Methods of analyses were according to those cited by Klute (1986), Page et al. (1982) and Soltanpour (1985).

Plant analyses: Dried plant sample was wet digested using.
RESULTS

Effect of N-source, bio-fertilization and proline on wheat grain yield and NPK uptake.

Effects on wheat grain yield

Table 4 shows that proline and the bio-fertilizer increased wheat grain yield significantly. Both of them, the combined treatment caused more increases in wheat grain yield than did the single treatments. Sulfur-coated urea and compost recorded the highest increases caused by N-source, whereas urea recorded the lowest increase.

Table 4: Wheat grain yield (Mg ha\(^{-1}\)) as affected by N-fertilizer, compost, bio-fertilizer and proline spray.

<table>
<thead>
<tr>
<th>Proline</th>
<th>Bio fertilizer</th>
<th>N - Source</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B(_0)</td>
<td>N(_0)</td>
<td>N(_1)</td>
</tr>
<tr>
<td>P(_0)</td>
<td>2.67</td>
<td>2.87</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>3.05</td>
<td>3.55</td>
<td>4.29</td>
</tr>
<tr>
<td>mean</td>
<td>2.86</td>
<td>3.21</td>
<td>3.64</td>
</tr>
<tr>
<td>P(_1)</td>
<td>3.19</td>
<td>3.39</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>3.79</td>
<td>4.09</td>
<td>5.55</td>
</tr>
<tr>
<td>mean</td>
<td>3.49</td>
<td>3.74</td>
<td>4.65</td>
</tr>
<tr>
<td>Grand mean</td>
<td>3.17</td>
<td>3.47</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Means of Bio fertilizer (B) | Mean
| B\(_0\) | 2.93 | 3.13 | 3.37 | 3.89 | 5.12 | 3.68 | |
| B\(_1\) | 3.42 | 3.82 | 4.92 | 5.11 | 5.25 | 4.50 | |

LSD \(0.05\): N=0.0069, B=0.0043, P=0.0043, NB=0.0097, NP=0.0097, BP=0.0060, NBP=0.0137

N sources: N\(_0\): no N, N\(_1\): Urea, N\(_2\): Urea formaldehyde, N\(_3\): Sulfur Coated Urea and N\(_4\): compost; biofertilization with moclulation seeds with azosirillum braiseleuse.

Effect on 1000- wheat grain weight

Table 5 illustrates that proline increased the 1000 grain weight and such increases were more pronounced with inoculation. On the other hand, N-source in the form of sulfur-coated urea and compost recorded the highest increases in the 1000-wheat grain yield.

The aforementioned results reveal that application of compost as a source for N increases grain yield as well as the 1000- wheat grain weight. This finding is probably due to its amending effect on soil properties decomposition of the organic compost beside CO\(_2\) formed and dissolved forming H\(_2\)CO\(_3\) which would decrease soil pH and makes plant nutrients elements more available. Also, compost as an organic amendment may acts as a cementing agent for the soil particles and hence encourages formation of soil aggregates.
Table 5: 1000- wheat grain weight as affected by N-source , bio-fertilizer and proline.

<table>
<thead>
<tr>
<th>Proline</th>
<th>Bio fertiliser</th>
<th>N - Source</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₀</td>
<td>22.33</td>
<td>27.00</td>
<td>32.00</td>
</tr>
<tr>
<td>B₁</td>
<td>29.33</td>
<td>37.67</td>
<td>41.00</td>
</tr>
<tr>
<td>mean</td>
<td>25.63</td>
<td>32.33</td>
<td>36.50</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₀</td>
<td>26.33</td>
<td>30.00</td>
<td>36.67</td>
</tr>
<tr>
<td>B₁</td>
<td>33.33</td>
<td>39.67</td>
<td>44.00</td>
</tr>
<tr>
<td>mean</td>
<td>29.83</td>
<td>34.83</td>
<td>40.33</td>
</tr>
<tr>
<td>Grand mean</td>
<td>27.83</td>
<td>33.58</td>
<td>38.42</td>
</tr>
</tbody>
</table>

Means of Bio fertilizer (B)

| B₀ | 24.33 | 28.50 | 34.33| 41.17| 44.00| 34.47|
| B₁ | 31.33 | 38.67 | 42.50| 48.83| 52.00| 42.67|

LSD :0.05: N=1.09, B=0.69, P=0.69, NB=n.s, NP=n.s, BP=0.98, NBP=2.19

Effect on NPK uptake by wheat grains

Effect on N-uptake

The results presented in Table 6 show that N-uptake by grains were significantly affected by spraying wheat with the osmo-regulator-proline and also with inoculation. Also, the source of N increased N-uptake, especially the compost source followed by the sulfur coated urea.

Table 6: N uptake (kg ha⁻¹) by wheat grains as affected by N-source, bio-fertilizers and proline spray.

<table>
<thead>
<tr>
<th>Proline</th>
<th>Bio fertiliser</th>
<th>N - Source</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₀</td>
<td>49.60</td>
<td>56.53</td>
<td>61.35</td>
</tr>
<tr>
<td>B₁</td>
<td>58.36</td>
<td>72.44</td>
<td>88.28</td>
</tr>
<tr>
<td>mean</td>
<td>53.98</td>
<td>64.49</td>
<td>74.82</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₀</td>
<td>60.43</td>
<td>67.49</td>
<td>76.23</td>
</tr>
<tr>
<td>B₁</td>
<td>73.54</td>
<td>85.48</td>
<td>116.12</td>
</tr>
<tr>
<td>mean</td>
<td>66.99</td>
<td>76.49</td>
<td>96.18</td>
</tr>
<tr>
<td>Grand mean</td>
<td>60.48</td>
<td>70.49</td>
<td>85.49</td>
</tr>
</tbody>
</table>

Means of Bio fertilizer (B)

| B₀ | 55.02 | 62.01 | 68.79| 80.98| 109.29| 75.22|
| B₁ | 65.95 | 78.96 | 102.20| 109.21| 115.31| 94.33|

LSD :0.05:- N₀=0.645, B₀=0.462, P₀=0.69, NB=n.s, NP=n.s, BP=n.s, NBP=n.s

Effect on P uptake

Table 7 demonstrates that P uptake increased in plants due to spraying plants with the osmo-regulator proline, bio-treatment or amending soil with a N-source. The organo-treatment seemed to be the most efficient N-source followed by sulfur coated urea, then urea formaldehyde. The different
treatments of the different combinations among these three factors were mostly of positive effect on P uptake. The treatments which combine seed mulication + proline + N addition may be recommended for maximum P uptake.

Table 7: P uptake (kg ha\(^{-1}\)) by grains as affected by N-source, biofertilizer and proline to wheat on a saline sandy clay soil

<table>
<thead>
<tr>
<th>Proline</th>
<th>Bio fertilizer</th>
<th>Source-N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N(_0)</td>
<td>N(_1)</td>
<td>N(_2)</td>
</tr>
<tr>
<td>P(_0)</td>
<td>B(_0)</td>
<td>9.690</td>
<td>10.903</td>
</tr>
<tr>
<td></td>
<td>B(_1)</td>
<td>11.997</td>
<td>15.743</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>10.843</td>
<td>13.323</td>
</tr>
<tr>
<td>P(_1)</td>
<td>B(_0)</td>
<td>12.003</td>
<td>14.220</td>
</tr>
<tr>
<td></td>
<td>B(_1)</td>
<td>15.410</td>
<td>19.360</td>
</tr>
</tbody>
</table>

Means of Bio fertilizer (B) Mean

LSD: 0.05: N=0.525, B=0.332, P=0.332, NB=0.742, NP=0.742, BP=0.469, NBP=1.050

N sources: N\(_0\): no N, N\(_1\): Urea, N\(_2\): Urea formaldehyde, N\(_3\): Sulfur Coated Urea and N\(_4\): compost; biofertilization with molculation seeds with azosirillum braileuse

Effect on K uptake

Table 8 demonstrates that K uptake by wheat grains was significantly increased owing to the treatments biofertilizer inoculation, spraying plants with proline and amending soil with N. The results recommend that the combination of N as fertilizer or compost, applied biofertilizer inoculant and spraying with proline could incerase K uptake values by the grains of wheat plants grown an a saline sodic soil.

Table 8: K uptake (kg ha\(^{-1}\)) by grains as affected by N-source, biofertilizer and proline

<table>
<thead>
<tr>
<th>Proline</th>
<th>Bio fertilizer</th>
<th>N-source</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N(_0)</td>
<td>N(_1)</td>
<td>N(_2)</td>
</tr>
<tr>
<td>P(_0)</td>
<td>B(_0)</td>
<td>61.33</td>
<td>67.34</td>
</tr>
<tr>
<td></td>
<td>B(_1)</td>
<td>71.57</td>
<td>84.28</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>66.45</td>
<td>75.81</td>
</tr>
<tr>
<td>P(_1)</td>
<td>B(_0)</td>
<td>74.13</td>
<td>79.68</td>
</tr>
<tr>
<td></td>
<td>B(_1)</td>
<td>89.58</td>
<td>98.70</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>81.86</td>
<td>89.19</td>
</tr>
<tr>
<td></td>
<td>Grand mean</td>
<td>74.15</td>
<td>82.51</td>
</tr>
</tbody>
</table>

Means of Bio fertilizer (B) Mean

LSD: 0.05: N=0.681, B=0.430, P=0.430, NB=0.962, NP=0.962, BP=0.609, NBP=1.361

N sources: N\(_0\): no N, N\(_1\): Urea, N\(_2\): Urea formaldehyde, N\(_3\): Sulfur Coated Urea and N\(_4\): compost; biofertilization with molculation seeds with azosirillum braileuse

71
Discussion
Wheat growth and grain yield are negatively affected under saline conditions (Grewal, 2010). Thus increasing crop tolerance for salinity is an important approach for maximizing the crop yield and (Rana Munns et al., 2006). Minimizing the uptake of nutrients by wheat can improve its growth under the saline conditions (Munns et al., 2012). Three approaches were examined in this study to increase the plant tolerance for soil salinity by inoculation with Azospirillum brasilianse, spraying plants with proline and N application by mineral and organic sources fulfilled plant needs for nutrients. Proline was found in high concentrations in many plant species as compatible solute under stress conditions (Ashraf et al., 2012; Khan et al., 2009; Lehmman et al., 2010; Szabados and Savouré, 2010). Thus it can be deduced that spraying plants with proline under stress conditions might be affective for increasing plant tolerance for salinity. Results by others indicate that spraying wheat with proline increased the yield and yield components (EL-Manoy, 1994). Inoculating wheat plants with Azospirillum brasilienese was found to be effective for improving the growth performance under soil saline conditions (Nabti et al. (2010)). Mechanisms for increasing plant tolerance for salinity is not well understood. It probably improved nutrient and water uptake, growth promotion and stimulation of plant metabolism(Dodd and Pérez-Alfocea, 2012). Azospirillum brasilienese is able to fix nitrogen (Fibach-Paldi et al., 2012) and improve the N uptake, total biomass and grain yield of wheat plants (Panwar and Singh, 2000). The urea fertilizer seemed to be of relatively less efficiency on growth performance of wheat. Urea is rapidly hydrolyzed in soil into NH\textsubscript{4}+ (Latifah et al., 2011), thus increasing to some extent the soil salinity, and also suffering of plant from salinity. Results by others indicate that nitrate and ammonium amendments were of little effect on wheat growth under saline conditions (Lewis et al., 1989), thus the use of sulfur coated urea can successfully retard urea hydrolysis in soil (Patra et al., 2009). The current results confirm the importance of amending soil with compost to increase plant tolerance to salinity and improve wheat performance. Hussain et al. (2001) found that the compost applied to a sodic soil increased wheat yield.

CONCLUSION
Inoculation of wheat seeds + N application “as mineral or organic + inoculation proline spray had more significant positive effects on grain yield and NPK uptake. Their effects in increasing plant tolerance seemed cumulative . Azospirillum bacteria accumulated compatible solutes as a mechanism to increase plant tolerance for salinity (Tripathi et al., 1998).
Amending the saline soils with compost is important to increase yield of wheat.

REFERENCES

Barbieri, Giancarlo, Antonella B, Emilio D, Simona V and Albino M 2011. Proline and light as quality enhancers of rocket (Eruca sativa Miller) grown under saline conditions. Scientia Horticulturae 128: 393-400. doi

Abbas, H. H. et al.

Page 74

Sucre, B. and N. Suárez 2011. Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environmental and Experimental Botany 70: 192-203. doi:

Zarea, M. J., S. Hajinia, N. Karimi, E. Mohammadi. G. F. Rejali and A. Varma 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45: 139-146. doi: